Jacobson-Witt algebras and Lie-admissible algebras
Conference
·
· Hadronic J.; (United States)
OSTI ID:6644974
For any field PHI of characteristics p > 0 and integer m greater than or equal to 1, there is a Jacobson-Witt algebra which is a Lie algebra. In this paper, all flexible Lie-admissible algebras U, such that U/sup -/ is a Jacobson-Witt algebra W/sub m/(p), are determined. For any W/sub m/(p), p > 2 there is exactly one such U and it is isomorphic to W/sub m/(p). There are two non-isomorphic algebras U such that U/sup -/ is isomorphic to W/sub 1/(2), and there are no algebras U with U/sup -/ isomorphic to W/sub m/(2), m > 1.
- Research Organization:
- Michigan State Univ., East Lansing
- OSTI ID:
- 6644974
- Report Number(s):
- CONF-8008162-
- Conference Information:
- Journal Name: Hadronic J.; (United States) Journal Volume: 4:2
- Country of Publication:
- United States
- Language:
- English
Similar Records
Realizations of infinite-dimensional Lie-admissible algebras, II
Lie-admissible algebras
Adjoint operators in Lie algebras and the classification of simple flexible Lie-admissible algebras
Conference
·
Sun Jan 31 23:00:00 EST 1982
· Hadronic J.; (United States)
·
OSTI ID:6934980
Lie-admissible algebras
Journal Article
·
Fri Mar 31 23:00:00 EST 1978
· Hadronic J.; (United States)
·
OSTI ID:6554409
Adjoint operators in Lie algebras and the classification of simple flexible Lie-admissible algebras
Journal Article
·
Tue Mar 31 23:00:00 EST 1981
· Trans. Am. Math. Soc.; (United States)
·
OSTI ID:6319338