Models of intermittency in hydrodynamic turbulence
Journal Article
·
· Physical Review Letters; (USA)
- 303 Potrillo Drive, Los Alamos, NM (USA)
A heurisitic model for evolution of the probability distribution (PDF) of transverse velocity gradient {ital s} in incompressible Navier-Stokes turbulence is distilled from an analytical closure for Burgers turbulence. At all Reynolds number {ital scrR}, the evolved PDF is {proportional to}{vert bar}{ital s}{vert bar}{sup {minus}1/2} exp({minus}const{times}{vert bar}{ital s}{vert bar}/{l angle}{ital s}{sup 2}{r angle}{sup 1/2}) for large {vert bar}{ital s}{vert bar}. The model suggests that skewness and flatnesses are asymptotically independent of {ital scrR}, and that cascade to smaller scales is not a fractal process. For Burgers dynamics, both simulations and the analytical closure give a PDF {proportional to}{vert bar}{xi}{vert bar}{sup {minus}1} exp({minus}const{times}{vert bar}{xi}{vert bar}/{l angle}{xi}{sup 2}{r angle}{sup 1/2}) for large negative velocity gradient {xi}.
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 6607600
- Journal Information:
- Physical Review Letters; (USA), Journal Name: Physical Review Letters; (USA) Vol. 65:5; ISSN PRLTA; ISSN 0031-9007
- Country of Publication:
- United States
- Language:
- English
Similar Records
Statistics of decaying Burgers turbulence
Steady-state Burgers turbulence with large-scale forcing
Evaluation of matrix elements l angle n , l t bar r sup. beta. t bar n , l prime r angle for arbitrary. beta
Journal Article
·
Sun Jan 31 23:00:00 EST 1993
· Physics of Fluids A; (United States)
·
OSTI ID:6832827
Steady-state Burgers turbulence with large-scale forcing
Journal Article
·
Sat Oct 31 23:00:00 EST 1998
· Physics of Fluids (1994)
·
OSTI ID:662207
Evaluation of matrix elements l angle n , l t bar r sup. beta. t bar n , l prime r angle for arbitrary. beta
Journal Article
·
Sun Sep 01 00:00:00 EDT 1991
· Physical Review A. General Physics; (United States)
·
OSTI ID:5151557
Related Subjects
640410* -- Fluid Physics-- General Fluid Dynamics
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
AMPLITUDES
ASYMPTOTIC SOLUTIONS
DIFFERENTIAL EQUATIONS
EQUATIONS
FLOW MODELS
FLUID FLOW
FLUID MECHANICS
FRACTALS
HYDRODYNAMICS
INCOMPRESSIBLE FLOW
MAPPING
MATHEMATICAL MODELS
MECHANICS
NAVIER-STOKES EQUATIONS
PARTIAL DIFFERENTIAL EQUATIONS
PROBABILITY
REYNOLDS NUMBER
SIMULATION
TURBULENCE
TURBULENT FLOW
VELOCITY
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
AMPLITUDES
ASYMPTOTIC SOLUTIONS
DIFFERENTIAL EQUATIONS
EQUATIONS
FLOW MODELS
FLUID FLOW
FLUID MECHANICS
FRACTALS
HYDRODYNAMICS
INCOMPRESSIBLE FLOW
MAPPING
MATHEMATICAL MODELS
MECHANICS
NAVIER-STOKES EQUATIONS
PARTIAL DIFFERENTIAL EQUATIONS
PROBABILITY
REYNOLDS NUMBER
SIMULATION
TURBULENCE
TURBULENT FLOW
VELOCITY