Optical characterization of CdZnTe/CdTe strained quantum wells
Strained layer structures have received a great deal of attention due both to their possible application in electronic devices and their intrinsic interest. The study of strained layer quantum wells grown using lattice mismatched materials has been widely developed for III-V semiconductors. Strained layer quantum wells grown using II-VI materials have not been studied nearly so much as those from III-V, but they are a rapidly growing field of semiconductor research. The wide gap II-VI materials are of interest because they are generally direct gap materials. This makes them attractive for optoelectronic devices. The majority of the work on strained layer structures in the wide gap tellurium based materials has focused in two areas. The first is the inclusion of Mn to produce dilute magnetic semiconductors (DMS) strained layers and superlattices. The other area is CdTe/ZnTe quantum wells and superlattices. Some related work has been done with CdZnTe/ZnTe structures. For the CdZnTe/CdTe very little work has been done and the majority of that used very small amounts of Zn. In this paper we will present the growth and optical characterization of Cd{sub 1-x}Zn{sub x}Te/CdTe strained single quantum wells (SSQW) where the Zn concentration ranges from about 10 to 50%. 10 refs., 3 figs.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (USA)
- Sponsoring Organization:
- DOE/DP
- DOE Contract Number:
- AC04-76DP00789
- OSTI ID:
- 6596756
- Report Number(s):
- SAND-90-2191C; CONF-901105--7; ON: DE90017036
- Country of Publication:
- United States
- Language:
- English
Similar Records
IR spectroscopy of lattice vibrations and comparative analysis of the ZnTe/CdTe quantum-dot superlattices on the GaAs substrate and with the ZnTe and CdTe buffer layers
Heterovalent semiconductor structures and devices grown by molecular beam epitaxy
Related Subjects
360602 -- Other Materials-- Structure & Phase Studies
360603* -- Materials-- Properties
CADMIUM COMPOUNDS
CADMIUM TELLURIDES
CHALCOGENIDES
LUMINESCENCE
MATERIALS
PHOTOLUMINESCENCE
SEMICONDUCTOR MATERIALS
SUPERLATTICES
TELLURIDES
TELLURIUM COMPOUNDS
ZINC COMPOUNDS
ZINC TELLURIDES