Catalytic liquid-phase oxidation of phenol aqueous solutions: A kinetic investigation
- National Inst. of Chemistry, Ljubljana (Slovenia). Lab. of Catalysis and Chemical Reaction Engineering
- Univ. of Ljubljana (Slovenia). Dept. of Chemical Engineering
Catalytic oxidation of aqueous phenol solutions was studied in a differential, liquid-full operated fixed-bed reactor. A proprietary catalyst comprised of supported copper, zinc, and cobalt oxides was found to be effective for converting phenol to benzenedioles and benzoquinones, the C-4 intermediates in total oxidation route, and carbon dioxide. The proposed intrinsic rate expression for the phenol disappearance is based on the Langmuir-Hinshelwood kinetic approach, considering both equilibrium phenol and dissociative oxygen adsorption processes on different types of active sites and assuming a bimolecular surface reaction between adsorbed reactant species to be the rate-controlling step. Apparent activation energies for catalytic phenol oxidation and heat of phenol adsorption, in the temperature range 150--180 C, were found to be 139 and [minus]62 kJ/mol, respectively. It is believed that the liquid-phase oxidation of an aqueous phenol solution undergoes a combined redox and heterogeneous free-radical mechanism. The involvement of a free-radical mechanism is indicated by the intermediates formed and by a pH as well as radical initiator effects on observed phenol disappearance rates.
- OSTI ID:
- 6593282
- Journal Information:
- Industrial and Engineering Chemistry Research; (United States), Journal Name: Industrial and Engineering Chemistry Research; (United States) Vol. 33:12; ISSN IECRED; ISSN 0888-5885
- Country of Publication:
- United States
- Language:
- English
Similar Records
Catalytic oxidation of organics in aqueous solutions: I. Kinetics of phenol oxidation
Catalytic liquid-phase hydrogenation of aqueous nitrate solutions: A kinetic investigation
Related Subjects
320305* -- Energy Conservation
Consumption
& Utilization-- Industrial & Agricultural Processes-- Industrial Waste Management
ACTIVATION ENERGY
ADSORPTION HEAT
AROMATICS
CATALYSIS
CATALYTIC EFFECTS
CHALCOGENIDES
CHEMICAL REACTIONS
COBALT COMPOUNDS
COBALT OXIDES
COPPER COMPOUNDS
COPPER OXIDES
ENERGY
ENTHALPY
EQUATIONS
HYDROGEN COMPOUNDS
HYDROXY COMPOUNDS
INDUSTRIAL WASTES
KINETIC EQUATIONS
LIQUID WASTES
ORGANIC COMPOUNDS
OXIDATION
OXIDES
OXYGEN COMPOUNDS
PHENOL
PHENOLS
PHYSICAL PROPERTIES
THERMODYNAMIC PROPERTIES
TRANSITION ELEMENT COMPOUNDS
WASTE WATER
WASTES
WATER
WATER TREATMENT
ZINC COMPOUNDS
ZINC OXIDES