Evaluation of tubular ceramic heat-exchanger materials in residual-oil-combustion environment
Technical Report
·
OSTI ID:6589735
Fourteen different structural ceramic tubes were exposed to a residual oil combustion environment at 1200/sup 0/C for 500 h with a total of six thermal cycles. Silicon carbide and alumina ceramics survived the exposure. Best candidates for heat exchanger use in residual oil combustion environments include siliconized silicon carbide, pressureless sintered silicon carbide, and high-purity alumina. Cordierite, mullite, and zirconia-mullite cracked extensively. Molten nodules or deposits of cristobalite, tridymite, and silicate glass containing fuel oil impurities such as Na, Al, Ca, V, Fe, and Ni formed on the upstream side of the SiC-based specimens. Active oxidation proceeds with the release of CO and CO/sub 2/ at the interface of the nodules or deposits formed on the SiC. Fuel oil impurities including Fe and Ni reacted with the free Si in siliconzed SiC to form low-melting alloys. Surface roughness and grain growth were observed in pressureless sintered SiC as a result of reactions. Microcracks were observed in chemically vapor deposited (CVD) SiC and CVD SiC on SiC. A thin layer of iron-nickel aluminate formed on the outer surfaces of aluminum oxide tubes. Significant grain growth was observed in the upstream side of the high-purity alumina tubes. The test exposure increased helium permeability of siliconized SiC, pressureless sintered SiC, high-purity alumina, and CVD SiC, but it decreased the air permeability of relatively permeable, porous materials. The room temperature C-ring fracture strength of pressureless sintered SiC and high-purity alumina decreased significantly during the exposure but that of siliconized SiC increased slightly. The thermal expansion of pressureless sintered SiC increased while the thermal expansion of siliconized SiC and high-purity alumina remained constant.
- Research Organization:
- Oak Ridge National Lab., TN (USA)
- OSTI ID:
- 6589735
- Report Number(s):
- ORNL/TM-7578
- Country of Publication:
- United States
- Language:
- English
Similar Records
Evaluation of tubular ceramic heat exchanger materials in acidic coal ash from coal-oil-mixture combustion. [Sialon; alumina; CVD, sintered, and siliconized SiC]
High temperature behaviour of silicon carbide and aluminium oxide ceramics in coal and residual-oil slags
Evaluation of tubular ceramic heat-exchanger materials in basic coal ash from coal-oil-mixture combustion. [Sialon]
Technical Report
·
Mon Nov 30 23:00:00 EST 1981
·
OSTI ID:5280230
High temperature behaviour of silicon carbide and aluminium oxide ceramics in coal and residual-oil slags
Journal Article
·
Sat Oct 31 23:00:00 EST 1981
· Ceram. Eng. Sci. Proc.; (United States)
·
OSTI ID:6458496
Evaluation of tubular ceramic heat-exchanger materials in basic coal ash from coal-oil-mixture combustion. [Sialon]
Technical Report
·
Fri Oct 01 00:00:00 EDT 1982
·
OSTI ID:6726692
Related Subjects
02 PETROLEUM
025000 -- Petroleum-- Combustion
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
320304* -- Energy Conservation
Consumption
& Utilization-- Industrial & Agricultural Processes-- Waste Heat Recovery & Utilization
36 MATERIALS SCIENCE
360205 -- Ceramics
Cermets
& Refractories-- Corrosion & Erosion
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
CARBIDES
CARBON COMPOUNDS
CERAMICS
CHALCOGENIDES
COMBUSTION PRODUCTS
CORROSION RESISTANCE
EXPANSION
FRACTURE PROPERTIES
FUEL OILS
FUELS
HEAT EXCHANGERS
IMPURITIES
LIQUID FUELS
MATERIALS TESTING
MECHANICAL PROPERTIES
OILS
ORGANIC COMPOUNDS
OTHER ORGANIC COMPOUNDS
OXIDES
OXYGEN COMPOUNDS
PERMEABILITY
PETROLEUM PRODUCTS
RESIDUAL FUELS
SILICON CARBIDES
SILICON COMPOUNDS
TENSILE PROPERTIES
TESTING
THERMAL EXPANSION
VERY HIGH TEMPERATURE
WASTE HEAT UTILIZATION
WASTE PRODUCT UTILIZATION
025000 -- Petroleum-- Combustion
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
320304* -- Energy Conservation
Consumption
& Utilization-- Industrial & Agricultural Processes-- Waste Heat Recovery & Utilization
36 MATERIALS SCIENCE
360205 -- Ceramics
Cermets
& Refractories-- Corrosion & Erosion
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
CARBIDES
CARBON COMPOUNDS
CERAMICS
CHALCOGENIDES
COMBUSTION PRODUCTS
CORROSION RESISTANCE
EXPANSION
FRACTURE PROPERTIES
FUEL OILS
FUELS
HEAT EXCHANGERS
IMPURITIES
LIQUID FUELS
MATERIALS TESTING
MECHANICAL PROPERTIES
OILS
ORGANIC COMPOUNDS
OTHER ORGANIC COMPOUNDS
OXIDES
OXYGEN COMPOUNDS
PERMEABILITY
PETROLEUM PRODUCTS
RESIDUAL FUELS
SILICON CARBIDES
SILICON COMPOUNDS
TENSILE PROPERTIES
TESTING
THERMAL EXPANSION
VERY HIGH TEMPERATURE
WASTE HEAT UTILIZATION
WASTE PRODUCT UTILIZATION