Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Radiosensitivity of human clonogenic myeloma cells and normal bone marrow precursors: Effect of different dose rates and fractionation

Journal Article · · International Journal of Radiation Oncology, Biology and Physics; (United States)

Evaluation of radiation dose rate and fractionation effects on clonogenic myeloma cells was carried out. The radiosensitivity of clonogenic myeloma cells was evaluated for seven human myeloma cell lines. The lines were maintained in liquid suspension culture. Following radiation, cells were plated in semisolid medium using methylcellulose as viscous support. Radiation doses up to 12 Gy were delivered at dose rates of 0.05 and 0.5 Gy/min by a [sup 60]Co source. Each total dose was administered either as a single dose or in multiple fractions of 2 Gy. The data were analyzed according to the linear quadratic and multi target model of irradiation. Clonogenic progenitors of the seven myeloma cell lines differed in their radiosensitivity as measured by multiple parameters. The differences were mainly observed at low dose. The most effective cytoreduction was seen when radiation was administered in a single fraction at high dose rate. The cytoreductive effect on clonogenic myeloma cells was compared for clinically practiced total body irradiation (TBI) schedules delivered either in a single or in multiple fractions without causing significant pulmonary toxicity. The administration of 12 Gy delivered in six fractions of 2 Gy resulted in a superior reduction of clonogenic cells compared to a single fraction of 5 Gy. The preparation of bone marrow transplant recipients with multiple myeloma using fractionated radiation with a total dose of 12 Gy appears to afford better ablation than a single dose of 5 Gy while maintaining a low incidence of pulmonary toxicity. 20 refs., 4 figs., 4 tabs.

OSTI ID:
6570542
Journal Information:
International Journal of Radiation Oncology, Biology and Physics; (United States), Journal Name: International Journal of Radiation Oncology, Biology and Physics; (United States) Vol. 28:4; ISSN IOBPD3; ISSN 0360-3016
Country of Publication:
United States
Language:
English