skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

Abstract

Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed inmore » order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.« less

Authors:
 [1];  [2]
  1. Pacific Northwest National Lab., Richland, WA (United States). Ecology Group|[Oregon State Univ., Corvallis, OR (United States). Dept. of Fisheries and Wildlife
  2. Pacific Northwest National Lab., Richland, WA (United States). Ecology Group
Publication Date:
Sponsoring Org.:
USDOE Bonneville Power Administration, Portland, OR (United States)
OSTI Identifier:
655410
DOE Contract Number:
AC06-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Management; Journal Volume: 22; Journal Issue: 5; Other Information: PBD: Sep-Oct 1998
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; COLUMBIA RIVER; HABITAT; SALMON; GROUND WATER; MATHEMATICAL MODELS; MIGRATION; HYDROELECTRIC POWER PLANTS; ENVIRONMENTAL IMPACTS

Citation Formats

Geist, D.R., and Dauble, D.D.. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers. United States: N. p., 1998. Web. doi:10.1007/s002679900137.
Geist, D.R., & Dauble, D.D.. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers. United States. doi:10.1007/s002679900137.
Geist, D.R., and Dauble, D.D.. 1998. "Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers". United States. doi:10.1007/s002679900137.
@article{osti_655410,
title = {Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers},
author = {Geist, D.R. and Dauble, D.D.},
abstractNote = {Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.},
doi = {10.1007/s002679900137},
journal = {Environmental Management},
number = 5,
volume = 22,
place = {United States},
year = 1998,
month = 9
}
  • This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimatelymore » the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.« less
  • We improved our predictions of fall chinook salmon (Oncorhynchus tshawytscha) habitat use by analyzing spawning habitat at the spatial scale of redd clusters. Spatial point pattern analyses indicated that redd clusters in the Hanford Reach, Columbia River, were consistent in their location from 1994 to 1995. Redd densities were 16.1 and 8.9 redds?ha-1 in 1994 and 1995, respectively, and individual redds within clusters were usually less than 30 m apart. Pattern analysis also showed strong evidence that redds were uniformly distributed within the clusters where inter-redd distances ranged from 2 to 5 m. Redd clusters were found to occur predominantlymore » where water velocity was between 1.4 to 2 m?s-1, water depth was 2 to 4 m, and lateral slope of the riverbed was less than 4%. This habitat use represented a narrower range of use than previously reported for adult fall chinook salmon. Logistic regression analysis determined that water velocity and lateral slope were the most significant predictors of redd cluster location over a range of river discharges. Over-estimates of available spawning habitat lead to non-achievable goals for protecting and restoring critical salmonid habitat. Better predictions of spawning habitat may be possible if cluster-specific characteristics are used.« less
  • Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperaturemore » between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.« less
  • Chief Joseph Dam on the Columbia River is the upstream terminus for anadromous fish, due to its lack of fish passage facilities. Management agencies are currently evaluating the feasibility of reintroducing anadromous fish upriver of Chief Joseph Dam. We evaluated the physical characteristics of potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat in the upper section of Chief Joseph Reservoir. The objective of this study was to estimate the quantity and location of potential spawning habitat, and secondly to determine the redd capacity of the area based on spawning habitat characteristics. We used a geomorphic approach to first identify specificmore » segments with the highest potential for spawning. The suitability of these segments for spawning was then estimated through the use of empirical physical data and modeled hydraulic data. We estimated 5% (48.7 ha) of the study area contains potentially suitable fall chinook salmon spawning habitat. Potential spawning habitat is primarily limited by water too deep and secondly by water velocities too low, the combination of which results in 20% (9.6 ha) of the potential spawning habitat being characterized as high quality. Estimates of redd capacity within potential spawning habitat range from 207? 1599 redds, based on proportional use of potential habitat and varying amounts of channelbed used by spawning salmon. The results of our study provide fisheries managers significant insight into one component of the complex issue of reintroducing anadromous fish to the Columbia River upstream of Chief Joseph Dam.« less
  • Previously we reported that about 30% to 60% of the area predicted to be used by fall Chinook salmon (Oncorhynchus tshawytscha) for spawning in the Hanford Reach of the Columbia River did not contain redds. One explanation for the overprediction of habitat was that our model did not incorporate streamflow fluctuation. Daily fluctuation in flow caused by load-following operations (power generation to meet short-term electrical demand) at Priest Rapids Dam, situated at the upper end of the Hanford Reach, changes the hydraulic characteristics to which fish respond in selecting redd sites. The purpose of the study described here was tomore » examine the effect of flow changes on spawning habitat modeling and, in particular, to look at the connection between spawning and the variability and persistence of habitat variables caused by rapid changes in flow resulting from load-following operations at Priest Rapids Dam. We found that spawning habitat use by fall Chinook salmon was consistent with previous fall Chinook salmon studies in the Reach. Dynamic variables that were based on hourly time series were used to account for the variability in habitat as a result of flow fluctuations. The analysis showed that the proportion of velocities that fell within the range of 1.0 to 2.5 m/s differed significantly between locations that were predicted to be spawning by the logistic regression model where spawning actually occurred and locations that were predicted to be spawning where spawning did not occur. However, the resulting sequential logistic regression model that incorporated the dynamic variables did not provide significant improvement in the percentage of errors for areas predicted to be spawning; the model’s overprediction errors still ranged from 63% to 78%. We suggest that while flow fluctuation may affect spawning habitat and individual fish behavior, the high correlation between time-averaged velocities and the proportion of hourly velocities that fell within the most favorable range negated any improvements in model predictions.« less