skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uptake and metabolism of L-(/sup 3/H)glutamate and L-(/sup 3/H)glutamine in adult rat cerebellar slices

Journal Article · · Neurochem. Res.; (United States)
DOI:https://doi.org/10.1007/BF00964001· OSTI ID:6541487

Using very low concentrations (1 mumol range) of L-2-3-(/sup 3/H)glutamate, (/sup 3/H-Glu) or L-2-3-(/sup 3/H)glutamine (/sup 3/H-Gln), the authors have previously shown by autoradiography that these amino acids were preferentially taken up in the molecular layer of the cerebellar cortex. Furthermore, the accumulation of /sup 3/H-Glu was essentially glial in these conditions. Uptake and metabolism of either (/sup 3/H-Glu) or (/sup 3/H-Gln) were studied in adult rat cerebellar slices. Both amino acids were rapidly converted into other metabolic compounds: after seven minutes of incubation in the presence of exogenous /sup 3/H-Glu, 70% of the tissue accumulated radioactivity was found to be in compounds other than glutamate. The main metabolites were Gln (42%), alpha-ketoglutarate (25%) and GABA (1,4%). In the presence of exogenous /sup 3/H-Gln the rate of metabolism was slightly slower (50% after seven minutes of incubation) and the metabolites were also Glu (29%), alpha-ketoglutarate (15%) and GABA (5%). Using depolarizing conditions (56 mM KCl) with either exogenous /sup 3/H-Glu or /sup 3/H-Gln, the radioactivity was preferentially accumulated in glutamate compared to control. From these results we conclude: i) there are two cellular compartments for the neurotransmission-glutamate-glutamine cycle; one is glial, the other neuronal; ii) these two cellular compartments contain both Gln and Glu; iii) transmitter glutamate is always in equilibrium with the so-called ''metabolic'' pool of glutamate; iv) the regulation of the glutamate-glutamine cycle occurs at least at two different levels: the uptake of glutamate and the enzymatic activity of the neuronal glutaminase.

Research Organization:
Centre de Neurochimie du CNRS, Strasbourg, France
OSTI ID:
6541487
Journal Information:
Neurochem. Res.; (United States), Vol. 8:10
Country of Publication:
United States
Language:
English