Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Laboratory column experiments for radionuclide adsorption studies of the Culebra dolomite member of the Rustler Formation

Technical Report ·
DOI:https://doi.org/10.2172/654012· OSTI ID:654012
;  [1];  [2]
  1. Sandia National Labs., Albuquerque, NM (United States)
  2. Oklahoma State Univ., Stillwater, OK (United States). Biosystems and Agricultural Engineering Dept.

Radionuclide transport experiments were carried out using intact cores obtained from the Culebra member of the Rustler Formation inside the Waste Isolation Pilot Plant, Air Intake Shaft. Twenty-seven separate tests are reported here and include experiments with {sup 3}H, {sup 22}Na, {sup 241}Am, {sup 239}Np, {sup 228}Th, {sup 232}U and {sup 241}Pu, and two brine types, AIS and ERDA 6. The {sup 3}H was bound as water and provides a measure of advection, dispersion, and water self-diffusion. The other tracers were injected as dissolved ions at concentrations below solubility limits, except for americium. The objective of the intact rock column flow experiments is to demonstrate and quantify transport retardation coefficients, (R) for the actinides Pu, Am, U, Th and Np, in intact core samples of the Culebra Dolomite. The measured R values are used to estimate partition coefficients, (kd) for the solute species. Those kd values may be compared to values obtained from empirical and mechanistic adsorption batch experiments, to provide predictions of actinide retardation in the Culebra. Three parameters that may influence actinide R values were varied in the experiments; core, brine and flow rate. Testing five separate core samples from four different core borings provided an indication of sample variability. While most testing was performed with Culebra brine, limited tests were carried out with a Salado brine to evaluate the effect of intrusion of those lower waters. Varying flow rate provided an indication of rate dependent solute interactions such as sorption kinetics.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
654012
Report Number(s):
SAND--97-1763; ON: DE98005268; BR: EW3155010
Country of Publication:
United States
Language:
English