skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism of thermal electron attachment in N/sub 2/O--CO/sub 2/ mixtures in the gas phase

Journal Article · · J. Chem. Phys.; (United States)
OSTI ID:6535068

The attachment of thermal electrons to nitrous oxide in N/sub 2/O--CO/sub 2/ mixtures has been studied at room temperature in the pressure range 5--120 torr. Ionization was by pulse radiolysis and the electron concentration was measured as a function of time by microwave conductivity. Addition of even less than 0.1% CO/sub 2/ to N/sub 2/O causes a marked increase in attachment rate. However, this enhancement soon saturates in that further additions of CO/sub 2/ have less and less effect. Experiments with ternary mixtures including C/sub 2/H/sub 6/ showed a further enhancement which was much larger than the additive effects of CO/sub 2/ and C/sub 2/H/sub 6/ alone. These observations can be explained by a two step three-body process producing vibrationally excited N/sub 2/O/sup -/* if the rate constant for stabilization of N/sub 2/O/sup -/* by CO/sub 2/ is 4 x 10/sup -30/ cm/sup 6//molecule/sup 2/xsec. The decrease in effectiveness with increased CO/sub 2/ pressure is interpreted as the collisional ionization of a complex ion, (N/sub 2/OxCO/sub 2/)/sup -/*. The nonadditive effect of hydrocarbon results from the rapid reactive destruction of such complexes by collision with the hydrocarbon. A detailed quantitative treatment of the proposed mechanism was successful in explaining most features of the data. In a limited set of experiments, allene : N/sub 2/O mixtures were found to behave much like CO/sub 2/--N/sub 2/O.

Research Organization:
Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556
OSTI ID:
6535068
Journal Information:
J. Chem. Phys.; (United States), Vol. 69:11
Country of Publication:
United States
Language:
English