Creep-fatigue interaction in delamination crack propagation of advanced CFRPs at high temperatures
- Osaka Univ., Suita, Osaka (Japan). Dept. of Mechanical Engineering and Systems
- Kyoto Univ. (Japan). Dept. of Engineering Physics and Mechanics
The objective of this study is to elucidate creep-fatigue interaction in Mode 1 delamination crack propagation of polymers reinforced by carbon fibers at high temperatures. The materials tested are two undirectionally reinforced laminates, AS4/PEEK (carbon fiber: AS4, matrix: poly-ether-ether-ketone) and T800H/PMR-15 (carbon fiber: T800H, matrix: polyimide). Crack propagation tests are conducted in cyclic loading conditions with and without hold(s) at maximum tension and zero load at 473 K for AS4/PEEK laminates and 573 K for T800H/PMR-15 laminates, respectively. In fatigue with high frequency, the crack propagation rate per unit cycle da/dN is correlated well with the stress intensity factor range {Delta}K. However, the crack propagation in AS4/PEEK laminates depends strongly on the load waveform, while that in T800H/PMR-15 laminates is independent of it. The crack propagation in AS4/PEEK laminates is accelerated by the tensile load hold due to the creep deformation of matrix and it is purely time-dependent. In the time-dependent crack propagation, the rate per unit time da/dt is correlated well with the stress intensity factor K at the hold. On the other hand, the time-dependent crack propagation is decelerated by the zero-load-hold because of the creep recovery of matrix.
- OSTI ID:
- 653451
- Report Number(s):
- CONF-951121--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Some remarks on static, creep and fatigue flexural strength of satin woven CFRP laminates
Time-dependent mechanical properties of 3-D braided graphite/PEEK composites