skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-(ring-/sup 2/H5)phenylalanine and L-(1-/sup 13/C) tyrosine in the postabsorptive state

Journal Article · · Metabolism; (United States)
OSTI ID:6532153

Steady state phenylalanine and tyrosine turnover and the rate of conversion of phenylalanine of tyrosine in vivo were determined in 6 healthy postabsorptive adult volunteers. Continuous infusions of tracer amounts of L-(ring-/sup 2/H5)phenylalanine were determined intravenously for 13-14 hr. After 9-10 hr, a priming dose followed by a continuous infusion of L-(1-/sup 13/C)tyrosine was added and maintained, along with the (/sup 2/H5)phenylalanine infusion, for 4 hr. Venous plasma samples were obtained before the initiation of each infusion and every 30 min during the course of the combined (/sup 2/H5)phenylalanine and (/sup 13/C)tyrosine infusion for determination of isotopic enrichments of (/sup 2/H5)phenylalanine, (/sup 13/C)tyrosine, and (/sup 2/H4)tyrosine by gas chromatograph-mass spectrometric analysis of the N-trifluoroacetyl-, methyl ester derivatives of the amino acids. Calculated from the observed enrichments, free phenylalanine and tyrosine turnover rates were 36.1 +/- 5.1 mumole . kg-1 . h-1 and 39.8 +/- 3.5 mumole . kg-1 . h-1, respectively. Phenylalanine was converted to tyrosine at the rate of 5.83 +/- 0.59 mumole . kg-1 . h-1, accounting for approximately 16% of either the phenylalanine or the tyrosine flux. The results indicate that the normal basal steady state phenylalanine hydroxylase activity in vivo in man is lower than that obtained from phenylalanine loading studies. This supports the existence of some type of substance activation of the enzyme as reflected in the previously reported exponential relationship between phenylalanine concentration and phenylalanine hydroxylase activity in vitro. The use of continuous simultaneous infusions of tracer amounts of stable isotope-labeled phenylalanine and tyrosine provides a direct means for studying physiological regulation of phenylalanine hydroxylase activity in vivo.

Research Organization:
Washington University School of Medicine, Department of Medicine, St. Louis, Missouri
OSTI ID:
6532153
Journal Information:
Metabolism; (United States), Vol. 31:10
Country of Publication:
United States
Language:
English