Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus

Thesis/Dissertation ·
OSTI ID:6524698

The biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus has been investigated. Previous studies indicated that a purine nycleoside is the precursor for ten of the eleven carbons of deoxycoformycin. It was proposed that carbon-7 of the seven-membered, 1,3-diazepine-ring of deoxycoformycin is not derived from the purine ring but by an insertion of a one-carbon unit between N-1 and C-6 of the purine ring. Carbon-1 of D-ribose has now been identified as the precursor for carbon 7 (and 1') of deoxycoformycin. Although the tetrahydrofolate/one-carbon pool contributes one carbon units to carbons-2 and 8 of the purine ring, which become carbons-5 and 2 of deoxycoformycin, it is not involved in the formation of carbon-7. The retention of the tritium on carbon-2 of (2,8-/sup 3/H)-adenosine in deoxycoformycin indicates that guanosine is not the nucleoside precursor of deoxycoformycin. The failure to detect the incorporation of /sup 18/O from (6-/sup 18/O)-inosine in deoxycoformycin suggests that inosine is not the purine nucleoside precursor of deoxycoformycin. Therefore, it is proposed that adenosine and carbon-1 and d-ribose are the carbon-nitrogen precursors of deoxycoformycin. A mechanism for the insertion of carbon-1 of d-ribose into the pyrimidine portion of the purine ring has been proposed. Using cell-free extracts of S. antibioticus, 8-ketodeoxycoformycin and 8-ketocoformycin can be converted to deoxycoformycin and coformycin, respectively. The enzyme which reduces the 8-keto groups has been characterized and partially purified.

Research Organization:
Temple Univ., Philadelphia, PA (USA)
OSTI ID:
6524698
Country of Publication:
United States
Language:
English