Coupling of Monte Carlo adjoint leakages with three-dimensional discrete ordinates forward fluences
A computer code, DRC3, has been developed for coupling Monte Carlo adjoint leakages with three-dimensional discrete ordinates forward fluences in order to solve a special category of geometrically-complex deep penetration shielding problems. The code extends the capabilities of earlier methods that coupled Monte Carlo adjoint leakages with two-dimensional discrete ordinates forward fluences. The problems involve the calculation of fluences and responses in a perturbation to an otherwise simple two- or three-dimensional radiation field. In general, the perturbation complicates the geometry such that it cannot be modeled exactly using any of the discrete ordinates geometry options and thus a direct discrete ordinates solution is not possible. Also, the calculation of radiation transport from the source to the perturbation involves deep penetration. One approach to solving such problems is to perform the calculations in three steps: (1) a forward discrete ordinates calculation, (2) a localized adjoint Monte Carlo calculation, and (3) a coupling of forward fluences from the first calculation with adjoint leakages from the second calculation to obtain the response of interest (fluence, dose, etc.). A description of this approach is presented along with results from test problems used to verify the method. The test problems that were selected could also be solved directly by the discrete ordinates method. The good agreement between the DRC3 results and the direct-solution results verify the correctness of DRC3.
- Research Organization:
- Oak Ridge National Lab., TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- AC05-96OR22464
- OSTI ID:
- 650309
- Report Number(s):
- ORNL/CP--96968; CONF-980403--; ON: DE98003378
- Country of Publication:
- United States
- Language:
- English
Similar Records
MASH, the Monte Carlo adjoint shielding code
Generalized approach to the biased adjoint Monte Carlo calculation