Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Water-soluble copolymers. XLV. Ampholytic terpolymers of acrylamide with sodium 3-acrylamide-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride

Journal Article · · Journal of Applied Polymer Science; (United States)
;  [1]
  1. Univ. of Southern Mississippi, Hattiesburg (United States)
Water-soluble, low charge density polyampholytes have been synthesized by free-radical terpolymerization of acrylamide (AM) with sodium 3-acrylamide-3-methylbutanoate (NaAMB) and 2-acrylamido-2-methylpropanetrimethylammonium chloride (AMPTAC). Terpolymer compositions obtained by [sup 13]C0NMR reflect monomer feed concentrations. Molecular weights and second virial coefficients range from 3.43 to 19.4 [times] 10[sup 6] g/mol and from 1.63 to 3.61 mL mol/g[sup [minus]2], respectively, as determined by low-angle laser light scattering. Ionic associations were explored by investigating the dilute solution properties as a function of terpolymer concentration, terpolymer charge density, and added electrolytes. Terpolymers with 0.5, 2.5, and 5.0 mol% of both of the cationic (AMTAC) and anionic (NaAMB) monomers were soluble in deionized water, whereas those with 10 and 15 mol% of each monomer required electrolyte addition. The higher-density terpolymers undergo a 700% increase in intrinsic viscosity upon changing NaCl concentration from 0.05 to 1M. Polyelectrolyte behavior could be induced by decreasing solution pH below the pK[sub a] of the NaAMB mer. Intermolecular ionic associations resulting in gel networks were studied utilizing dynamic mechanical analysis.
OSTI ID:
6482709
Journal Information:
Journal of Applied Polymer Science; (United States), Journal Name: Journal of Applied Polymer Science; (United States) Vol. 48:6; ISSN 0021-8995; ISSN JAPNAB
Country of Publication:
United States
Language:
English