skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation-induced conductivity and high temperature Q changes in quartz resonators

Technical Report ·
DOI:https://doi.org/10.2172/6457482· OSTI ID:6457482

While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques were investigated - one involves measurement of the radiation-induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in an associated increase in ionic conduction and in the second case resulting in increased acoustic losses. Radiation-induced conductivity measurements were carried out with a 200 kV, 14 mA X-ray machine producing approximately 5 rads/sec at the sample. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature (300 to 800 K) Q/sup -1/ measurement technique is limited by the uncertainties associated with quantitative correlation of the high temperature acoustic losses with the concentration of impurity centers. A number of resonators constructed of quartz material of different impurity contents have been tested, and both the radiation-induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation-induced frequency and resonator resistance changes. A postirradiation-induced conductivity index and a high temperature Q index show excellent correlation with the earlier pulsed irradiation-induced dynamic resonator motional resistance changes, and it is therefore concluded that either measurement can be employed to serve as an acceptance criterion for radiation hardness.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
6457482
Report Number(s):
SAND-81-0126; ON: DE81025892
Country of Publication:
United States
Language:
English