Imaging experiments of Ne-like x-ray lasers
We discuss high resolution two-dimensional near-field images of the neon-like nickel and germanium x-ray laser obtained using the Asterix laser at the Max-Planck-Institute and the Nova laser at Lawrence Livermore National Laboratory. Our imaging diagnostic consisted of a concave multilayer mirror that imaged the output end of the x-ray laser line onto a backside illuminated x-ray CCD detector. A 25 microm thick wire positioned at the end of the target provided a spatial fiducial. With the Asterix iodine laser, a prepulse 5.23 ns before the main pulse, was used to irradiate slab targets. A great deal of structure was observed in the near field images, particularly in the J=0-1 emission. We observed a large difference in the spatial dependence of the J=0-1 and J=2-1 lines of germanium, with the J=2-1 emission peaking farther away from the original target surface. A larger prepulse moved the peak emission farther away from the target surface. For the Nova experiments we used a series of 100 ps pulses spaced 400 ps apart to illuminate a germanium target. We obtained high resolution images of both the J=0-1 and J=2-1 lines of Ge. These measurements are compared to hydrodynamic simulations coupled with atomic kinetics and including refraction effects.
- Research Organization:
- Lawrence Livermore National Lab., CA (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 644511
- Report Number(s):
- UCRL-JC--125816; CONF-970706--; ON: DE98050262; CNN: W-7405-Eng-48
- Country of Publication:
- United States
- Language:
- English
Similar Records
Two-dimensional near-field images of the neonlike germanium soft-x-ray laser
Spatial position of prepulse induced {ital J}=0{r_arrow}1, 3{ital p}-3{ital s} lasing in low-{ital Z} neonlike ions