Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Stress corrosion cracking of A471 turbine disk steels: Effects of dissolved oxygen and carbon dioxide in high-purity water: Final report

Technical Report ·
OSTI ID:6440894

Experiments were performed to determine the effect of dilute impurities in high purity water on the rate of initiation and growth of stress corrosion cracks in NiCrMoV steels. 3.5 NiCrMoV steels of commercial quality, high purity, and high purity with intentionally added tramp elements were investigated. Dissolved oxygen and carbon dioxide were the primary water impurities investigated. The tests were conducted on constant load, smooth bar tensile specimens of the NiCrMoV steels in flowing 160C high purity water containing various dilute levels of impurities. It was determined that the initiation rate is very sensitive to changes in dissolved oxygen content; the peak initiation rate are achieved between 20 and 80 ppB dissolved oxygen. The initiation rate is less sensitive to dissolved CO2 content. The crack growth rate in high purity water is only weakly dependent on dissolved O2 and CO2. This work shows that the crack growth rate is strongly dependent on the yield strength (and therefore the microstructure that develops as a result of tempering) of the turbine disc alloy, whereas the initiation rate is only weakly dependent on material yield strength. In addition, crack growth rates decrease as grain sizes are decreased. In general, crack growth rates are very slow (less than 10 m/s) in these dilute environments in materials with yield strengths below 690 Mpa (100 ksi). The results of these experiments indicate that a hydrogen-assisted process may be an important cracking mechanism in these alloys in these dilute environments. Implication of a hydrogen-assisted mechanism could have important consequences in the design and selection of turbine disc alloys.

Research Organization:
SRI International, Menlo Park, CA (USA); Electric Power Research Inst., Palo Alto, CA (USA)
OSTI ID:
6440894
Report Number(s):
EPRI-NP-5182; ON: TI87920477
Country of Publication:
United States
Language:
English