Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. [Gegenbauer, Laguerre, Hermite functions]

Journal Article · · SIAM J. Math. Anal.; (United States)
DOI:https://doi.org/10.1137/0509007· OSTI ID:6424771
Nicholson's formula gives a generalization of the relation sin/sup 2/ x + cos/sup 2/ x = 1 to the case of Bessel functions. A similar result is presented which relates the sum of squares of the Jacobi functions p/sub n//sup (..cap alpha..,..beta..)/ and Q/sub n//sup (..cap alpha..,..beta..)/(x) to an integral over a single Jacobi function of the second kind, with the integrand positive. The Nicholson-type formula is a special case of a general product formula for two Jacobi functions of the second kind with different arguments, Q/sub n//sup (..cap alpha..,..beta..)/(z/sub 1/)Q/sub n//sup (..cap alpha..,..beta..)/(z/sub 2/). Various confluent limits of these expressions give Nicholson-type integrals and product formulas for general Gegenbauer, Laguerre, Bessel, and Hermite functions. These results are summarized in the present paper. Derivations and applications will be given elsewhere.
Research Organization:
Univ. of Wisconsin, Madison
OSTI ID:
6424771
Journal Information:
SIAM J. Math. Anal.; (United States), Journal Name: SIAM J. Math. Anal.; (United States) Vol. 9:1; ISSN SJMAA
Country of Publication:
United States
Language:
English

Similar Records

Addition formulas for Jacobi, Gegenbauer, Laguerre, and hyperbolic Bessel functions of the second kind
Journal Article · Wed Feb 28 23:00:00 EST 1979 · SIAM J. Math. Anal.; (United States) · OSTI ID:6821243

Error functional expansion for N-dimensional quadrature with an integrand function singular at a point
Journal Article · Wed Dec 31 23:00:00 EST 1975 · Math. Comput.; (United States) · OSTI ID:7136626

Zeros of Jacobi polynomials P/sub n//sup (. cap alpha. /sub n/,. beta. /sub n/)/(x)
Journal Article · Sat Mar 31 23:00:00 EST 1979 · Trans. Am. Math. Soc.; (United States) · OSTI ID:6898370