Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Higher-order boundary-layer solution for unsteady motion of a circular cylinder

Thesis/Dissertation ·
OSTI ID:6418172

The higher-order boundary-layer solution for an impulsively moving circular cylinder with uniform velocity and an exponentially accelerating cylinder in incompressible, relatively high-Reynolds-number flow of short duration is considered. A perturbation method is employed to linearize the two-dimensional vorticity equation by a double-series expansion with respect to the Reynolds number and the time. A matched asymptotic expansion is carried out to define the proper boundary conditions between the viscous and inviscid layers for the linearized first-, second-, and third-order boundary-layer equations. Singularities appear in the viscous displacement velocities and skin frictions in the higher-order approximate solutions that coincide with the singularity of the first-order approximate solution. These singularities have alternating signs and increasing magnitudes so an attempt was made to remove the effects of the singularity of the lower-order solution. However this attempt at removing a singularity by superposing even stronger singularities makes the solution worse around the singularity, and the boundary-layer assumptions break down at that point.

Research Organization:
Stanford Univ., CA (USA)
OSTI ID:
6418172
Country of Publication:
United States
Language:
English

Similar Records

Viscous-inviscid interaction with higher-order viscous-flow equations
Thesis/Dissertation · Tue Dec 31 23:00:00 EST 1985 · OSTI ID:5249086

Computation of two-dimensional, viscous nozzle flow
Journal Article · Sun Feb 29 23:00:00 EST 1976 · AIAA (Am. Inst. Aeronaut. Astronaut.) J.; (United States) · OSTI ID:7343265

Suit penetration study: preliminary analysis of flow about a circular cylinder
Technical Report · Tue Nov 26 23:00:00 EST 1985 · OSTI ID:6192712