skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron transfer in the quenching of protonated triplet methylene blue by ground-state molecules of the dye

Journal Article · · J. Phys. Chem.; (United States)
DOI:https://doi.org/10.1021/j150607a017· OSTI ID:6417835

A Q-switched pulsed ruby laser emitting at 694.3 nm was used in an investigation by means of flash photolysis-kinetic spectrophotometry of the mechanism of quenching of the monoprotonated lowest triplet state of methylene blue, /sup 3/MBH/sup 2 +/, by the ground state of the dye, MB/sup +/. Quenching in 0.01 N acid is accompanied by electron transfer to give the half-oxidized and half-reduced ion radicals, MB/sup 2 +/. and MBH/sup +/.. The absorption spectrum of MB/sup 2 +/. has been characterized in several media from 360 to 600 nm. The rate constant for quenching, k/sub q/, varies with solvent, ionic strength, and nature of anions with values around 1 x 10/sup 8/ M/sup -1/ s/sup -1/ in water, aqueous CH/sub 3/CN, and aqueous EtOH. The efficiency of net electron transfer in quenching, F/sub 1/(= k/sub et//k/sub q/), varies with solvent but is independent of the ionic strength or the nature of the anions. F/sub 1/ varies inversely with polarity of the solvent from 0.055 in water to 0.48 in 90% (vol/vol) aqueous CH/sub 3/CN. On the basis of analogy to the behavior of a number of other quenchers and the observed linear variation of the function ln ((1/F/sub 1/)-1) with Kosower's polarity parameter Z, it is suggested that reversible electron transfer is the only significant mechanism of quenching of /sup 3/MBH/sup 2 +/ by MB/sup +/(S/sub 0/). Both MBH/sup +/. and MB/sup 2 +/. decay by second-order processes in solvents containing 75% (vol/vol) or less of organic component but the specific rates are different for the two species in most media. It is suggested that in the latter media both cross reaction of MBH/sup +/. with MB/sup 2 +/. and biomolecular reaction of two molecules of the same radical occur. This study shows that ground-state quenching can significantly reduce the sunlight engineering efficency of photogalvanic conversion in systems incorporating relatively concentrated dyes.

Research Organization:
Boston Univ., MA
OSTI ID:
6417835
Journal Information:
J. Phys. Chem.; (United States), Vol. 85:7
Country of Publication:
United States
Language:
English