skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Path dependence of the J-integral and the role of J as a parameter characterizing the near-tip field

Journal Article · · Am. Soc. Test. Mater., Spec. Tech. Publ.; (United States)
OSTI ID:6394649

The J-integral has significant path dependence immediately adjacent to a blunted crack tip under small-scale yielding conditions in an elastic-plastic material subject to mode I loads and plane-strain conditions. Since the J-integral, evaluated on a contour remote from the crack tip, can be used as the one fracture-mechanics parameter required to represent the intensity of the load when small-scale yielding conditions exist, J retains its role as a parameter characterizing the crack-tip stress fields, at least for materials modelled by the von Mises flow theory. Some results obtained using both the finite-element method and the slip-line theory are suggestive of a situation in which an outer field parameterized by a path-independent value of J controls the deformation in an inner or crack-tip field in which J is path dependent. The outer field is basically the solution to the crack problem when large deformation effects involved in the blunting are ignored. Thus, the conventional small-strain approaches in which the crack-tip deformation is represented by a singularity have been successful in characterizing such features as the crack-tip opening displacement in terms of a value of the J-integral on a remote contour. An interesting deduction concerns a nonlinear elastic material with characteristics in monotonic stressing similar to an elastic-plastic material. Since J is path independent everywhere in such a material, the stress and strain fields near the crack tip in such a material must differ greatly from those arising in the elastic-plastic materials studied so far. This result is of significance because it is believed that such nonlinear elastic constitutive laws can represent the limited strain-path independence suggested by models for plastic flow of polycrystalline aggregates based on crystalline slip within grains.

Research Organization:
Brown Univ., Providence, RI
OSTI ID:
6394649
Journal Information:
Am. Soc. Test. Mater., Spec. Tech. Publ.; (United States), Vol. 631
Country of Publication:
United States
Language:
English