skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Knight-shift anomalies in heavy-electron materials

Journal Article · · Physical Review, B: Condensed Matter
 [1];  [1]
  1. Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

We have studied the Knight shift K({rvec r},T) and magnetic susceptibility {chi}(T) of heavy-electron materials, modeled by the infinite-U Anderson model with the noncrossing approximation method. A systematic study of K({rvec r},T) and {chi}(T) for different Kondo temperatures T{sub 0} (which depends on the hybridization width {Gamma}) shows a low-temperature anomaly (nonlinear relation between K and {chi}) which increases as the Kondo temperature T{sub 0} and distance r increase. We carried out an incoherent lattice sum by adding the K({rvec r}) of a few hundred shells of rare-earth atoms around a nucleus and compare the numerically calculated results with the experimental results. For CeSn{sub 3}, which is a concentrated heavy-electron material, both the {sup 119}Sn NMR Knight shift and positive muon Knight shift are studied. Also, lattice coherence effects by conduction-electron scattering at every rare-earth site are included using the average-T-matrix approximation. The calculated magnetic susceptibility and {sup 119}Sn NMR Knight shift show excellent agreement with experimental results for both incoherent and coherent calculations. The positive muon Knight shifts are calculated for both possible positions of muon (center of the cubic unit cell and middle of Ce-Ce bond axis). Our numerical results show a low-temperature anomaly for the muons of the correct magnitude but we can only find agreement with experiment if we take a weighted average of the two sites in a calculation with lattice coherence present. For YbCuAl, the measured {sup 27}Al NMR Knight shift shows an anomaly with opposite sign to the CeSn{sub 3} compound. Our calculations agree very well with the experiments. For the proposed quadrupolar Kondo alloy Y{sub 0.8}U{sub 0.2}Pd{sub 3}, our {sup 89}Y NMR Knight-shift calculation do not show the observed Knight-shift anomaly. {copyright} {ital 1998} {ital The American Physical Society}

OSTI ID:
639172
Journal Information:
Physical Review, B: Condensed Matter, Vol. 58, Issue 6; Other Information: PBD: Aug 1998
Country of Publication:
United States
Language:
English