Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Multivariable biorthogonal Hahn polynomials

Journal Article · · J. Math. Phys. (N.Y.); (United States)
DOI:https://doi.org/10.1063/1.528430· OSTI ID:6386726
A multivariable biorthogonal generalization of the discrete Hahn polynomials, a p+1 complex parameter family, where p is the number of variables, is presented. It is shown that the polynomials are orthogonal with respect to subspaces of lower degree and biorthogonal within a given subspace. These properties are over the discrete simplex 0less than or equal tox/sub 1/+x/sub 2/+xxx+x/sub p/less than or equal to..delta.., where x/sub 1/, x/sub 2/,...,x/sub p/ and ..delta.. are non-negative integers. Some further properties of the closely related multivariable continuous Hahn polynomials are also discussed.
Research Organization:
Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
OSTI ID:
6386726
Journal Information:
J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 30:3; ISSN JMAPA
Country of Publication:
United States
Language:
English

Similar Records

Multivariable continuous Hahn polynomials
Journal Article · Fri Jul 01 00:00:00 EDT 1988 · J. Math. Phys. (N.Y.); (United States) · OSTI ID:5183033

Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
Journal Article · Sun Jul 01 00:00:00 EDT 1990 · Journal of Mathematical Physics (New York); (USA) · OSTI ID:6802886

Multivariable Meixner, Krawtchouk, and Meixner--Pollaczek polynomials
Journal Article · Thu Nov 30 23:00:00 EST 1989 · Journal of Mathematical Physics (New York); (USA) · OSTI ID:5175531