Multivariable biorthogonal Hahn polynomials
Journal Article
·
· J. Math. Phys. (N.Y.); (United States)
A multivariable biorthogonal generalization of the discrete Hahn polynomials, a p+1 complex parameter family, where p is the number of variables, is presented. It is shown that the polynomials are orthogonal with respect to subspaces of lower degree and biorthogonal within a given subspace. These properties are over the discrete simplex 0less than or equal tox/sub 1/+x/sub 2/+xxx+x/sub p/less than or equal to..delta.., where x/sub 1/, x/sub 2/,...,x/sub p/ and ..delta.. are non-negative integers. Some further properties of the closely related multivariable continuous Hahn polynomials are also discussed.
- Research Organization:
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
- OSTI ID:
- 6386726
- Journal Information:
- J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 30:3; ISSN JMAPA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Multivariable continuous Hahn polynomials
Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
Multivariable Meixner, Krawtchouk, and Meixner--Pollaczek polynomials
Journal Article
·
Fri Jul 01 00:00:00 EDT 1988
· J. Math. Phys. (N.Y.); (United States)
·
OSTI ID:5183033
Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
Journal Article
·
Sun Jul 01 00:00:00 EDT 1990
· Journal of Mathematical Physics (New York); (USA)
·
OSTI ID:6802886
Multivariable Meixner, Krawtchouk, and Meixner--Pollaczek polynomials
Journal Article
·
Thu Nov 30 23:00:00 EST 1989
· Journal of Mathematical Physics (New York); (USA)
·
OSTI ID:5175531