skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prestressed concrete using KEVLAR reinforced tendons

Miscellaneous ·
OSTI ID:6385649

KEVLAR is a high strength, high modulus synthetic fiber manufactured by the E.I. DuPont de Nemours Company. The fiber is resistant to chloride and alkali attack. The resistance is enhanced when the fibers are assembled into a resin matrix and fabricated as rods. These properties suggest that KEVLAR reinforced rods may be a substitute for high strength steel prestress tendons in certain applications such as bridge decks and parking structures. This dissertation presents the background, theoretical development, and experimental investigations of KEVLAR reinforced rod strength, anchorage, fabrication and performance in prestressed concrete structures. The study concludes that KEVLAR has significant potential for these prestressed concrete applications. However, the reliability of the long term anchorage of the KEVLAR reinforced rods must be improved before production applications are undertaken. KEVLAR has a low shear strength compared to its tensile capacity. The anchorage of KEVLAR reinforced rods is sensitive to the shear forces generated in the anchorage assembly. Finite element analyses, using interface elements to simulate the addition of a mold release agent in a conic anchor, predict the behavior of resin socketed anchors. Test results confirm that mold release agents reduce the anchor shear stresses and suggest that moderate strength resins may be used in the anchor. KEVLAR is nearly linearly elastic to failure, yet ductility of a structure is an important design concern. Prestressed concrete beam tests using both bonded and unbonded tendons demonstrated that ductile structural behavior is obtained. Methods of predicting the strength and deflection behavior of the prestressed beams are presented and the theoretical predictions are compared to the experimental results. The overall correlation between predicted and theoretical results is satisfactory.

Research Organization:
Cornell Univ., Ithaca, NY (USA)
OSTI ID:
6385649
Resource Relation:
Other Information: Thesis (Ph.D)
Country of Publication:
United States
Language:
English