Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Hydrocarbon conversion with a sulfided superactive multimetallic catalytic composite

Patent ·
OSTI ID:6367143
Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel sulfided superactive multimetallic catalytic composite comprising a sulfided combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, sulfur component, and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, 0.001 to about 0.2 wt. % sulfur, and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (I.E. Platinum-seeking) propensities of the carbon monoxide ligands used in the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the subject sulfided superactive multimetallic catalytic composite at reforming conditions.
Assignee:
UOP Inc
Patent Number(s):
US 4246095
OSTI ID:
6367143
Country of Publication:
United States
Language:
English