skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges: distance and solvent dependence

Journal Article · · J. Am. Chem. Soc.; (United States)
DOI:https://doi.org/10.1021/ja00245a014· OSTI ID:6365834

A series of molecules 1 was synthesized containing a 1,4-dimethoxynaphthalene donor (D) an a 1,1-dicyanoethylene acceptor (a) interconnected by five different, rigid, nonconjugated bridges. The length of the bridges varies with increments of two sigma-bonds from four in 1(4) to 12 sigma-bonds in 1(12), to provide donor-acceptor center-to-center separations (R/sub c/) ranging from 7.0-14.9 A. In solvents of medium and high polarity, excitation of the donor D is followed by rapid intramolecular electron transfer. The rate constant (k/sub et/) shows only small dependence upon the solvent polarity (a factor of 2-3 between benzene and acetonitrile, for example) but decreases with increasing separation ranging from >10/sup 11/ s/sup -1/ for a four-bond separation to approx. =4 x 10/sup 8/ s/sup -1/ for a 12-bond separation. In saturated hydrocarbon solvents photoinduced electron transfer is not observed for 10 and 12-bond separations, while it is not significantly decreased for the shorter homologues. Therefore the absence of electron transfer at 10- and 12-bond separations in saturated hydrocarbon solvents is attributed to a thermodynamic rather than to a kinetic effect. In solvents where electron transfer is thermodynamically feasible, its rate is considerably greater than that found from various other experimental studies where either different bridges were used or intermolecular electron transfer was studied. Through-bond interaction involving sigma/..pi.. interaction between the bridge and the donor-acceptor pair is proposed to explain the very high electron transfer rates observed in 1; this is qualitatively correlated with independent information about this coupling derived from both theory and experiment (photoelectron spectroscopy).

Research Organization:
Univ. of Amsterdam, Netherlands
OSTI ID:
6365834
Journal Information:
J. Am. Chem. Soc.; (United States), Vol. 109:11
Country of Publication:
United States
Language:
English