skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-induced chemical reactions. [H + H/sub 2/; F + H/sub 2/; H + HF; Cl + H/sub 2/; H + HCl; H + LiF]

Technical Report ·
DOI:https://doi.org/10.2172/6353067· OSTI ID:6353067

A classical model for the interaction of laser radiation with a molecular system is derived. This model is used to study the enhancement of a chemical reaction via a collision induced absorption. It was found that an infrared laser will in general enhance the rate of a chemical reaction, even if the reactants are infrared inactive. Results for an illustrative analytically solvable model are presented, as well as results from classical trajectory studies on a number of systems. The collision induced absorption spectrum in these systems can be written as the Fourier transform of a particular dipole correlation function. This is used to obtain the collision induced absorption spectrum for a state-selected, mono-energetic reactive collision system. Examples treated are a one-dimensional barrier problem, reactive and nonreactive collisions of H + H/sub 2/, and a modified H + H/sub 2/ potential energy surface which leads to a collision intermediate. An extension of the classical model to treat laser-induced electronically nonadiabatic collision processes is constructed. The model treats all degrees of freedom, molecular, electronic and radiation, in a dynamically consistent framework within classical mechanics. Application is made to several systems. Several interesting phenomena are discovered including a Franck-Condon-like effect causing maxima in the reaction probability at energies much below the classical threshold, laser de-enhancement of chemical reactions and an isotope effect. In order to assess the validity of the classical model for electronically nonadiabatic process (without a laser field), a model problem involving energy transfer in a collinear atom-diatom system is studied, and the results compared to the available quantum mechanical calculation. The calculations are in qualitative agreement.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
6353067
Report Number(s):
LBL-12089; ON: DE81023032; TRN: 81-010842
Resource Relation:
Other Information: Thesis
Country of Publication:
United States
Language:
English