Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A comprehensive model for the prediction of tritium behavior in solid breeder materials during steady-state and transient conditions

Thesis/Dissertation ·
OSTI ID:6350917
In recent years, the area of tritium transport and release from Li-base ceramics in fusion blankets has become increasingly important particularly in conjunction with the growing amount of data available from in-pile tritium recovery experiments. Key variables that can strongly affect the tritium inventory and the kinetics of release, such as purge gas composition, temperature, solid breeder microstructure and activation energies for bulk diffusion and for desorption have been identified. Therefore, in the current phase of research and development, there is a strong incentive to develop comprehensive predictive capabilities in order to understand the new experimental data, to extrapolate these data to different ranges of conditions of interest, and to provide a necessary tool for fusion blanket design analysis. The objectives of this research are: (1) to develop new models for tritium transport in solid breeders to better describe the complex multistep phenomena that characterize tritium release, (2) to develop a computer code to predict tritium behavior, as a function of different variables and for a wide range of operating conditions, (3) to calibrate such models with existing experimental results. A comprehensive model is proposed. The sequence of transport processes leading to tritium release includes diffusion through the grain and along the grain boundaries, adsorption and desorption at the breeder surface and diffusion through the pore. A computer code called MISTRAL has been developed based on this model. The results obtained are in reasonable agreement with the experimental results, for the available set of property data, and indicate a fairly good predictive capability of the model for the analysis of several transients of interest for solid breeder fusion blankets.
Research Organization:
California Univ., Los Angeles, CA (USA)
OSTI ID:
6350917
Country of Publication:
United States
Language:
English