Behavior and rupture of hydrided Zircaloy-4 tubes and sheets
- Ecole des Mines de Paris, Evry (France)
- Framatome Nuclear Fuel, Lyon (France)
- ENSCT, Toulouse (France). Lab. Materiaux
Zirconium alloys are used as structural parts in the nuclear fuel assembly. The mechanical behavior and rupture mechanisms of ZIRCALOY-4 guide tubes and sheet containing 150 to 1,200 wt ppm hydrogen have been investigated at room temperature. Sheets were notched to study the influence of geometrical defects on rupture. It is shown that hydrides strengthened the material, as maximum stresses sustained by the material are increased with increasing hydrogen contents. On the other hand, ductility is reduced. The material also exhibits a strong anisotropy due to its pronounced texture. Metallographic examinations have shown that damage by hydride cracking is a continuous process that starts after the onset of necking. Notches reduce ductility. A modified Gurson-Tvergaard model was used to represent the material behavior and rupture. Numerical simulation using the finite element method demonstrates the strong influence of plastic anisotropy on the behavior of structures and rupture modes.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 634645
- Journal Information:
- Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Journal Name: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Journal Issue: 6 Vol. 29; ISSN 1073-5623; ISSN MMTAEB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Local Approach of Fracture in the Ductile Regime and Application to VVER Materials
Brittle fracture induced by hydrides in zircaloy-4