Proximity effect in zero field with the Landau-Ginzburg equation. I
- Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH (USA)
The proximity effect can be explained by solving the complete Landau-Ginzburg equation. The solution of the equation naturally produces a simple and explicit expression of the transition temperature for a film sandwich composed of a bulk superconductor and a normal metal. The general result obtained is {ital T}{sub {ital c}{ital S}{ital N}}/{ital T}{sub {ital c}{ital S}}={ital t}=1{minus}{ital B}{sub 0}{ital d}{sub {ital N}}{xi}{sub {ital S}}/({ital d}{sub {ital S}}{sup 2}+3{ital d}{sub {ital N}}{ital d}{sub {ital S}}/{ital k}) or an alternative, {ital t}=(1{minus}{ital B}{sub 0}{ital d}{sub {ital N}}{xi}{sub {ital S}}/({ital d}{sub {ital S}}{sup 2}+3{ital d}{sub {ital N}}{ital d}{sub {ital S}}/{ital k})){sup 1/2}. The theoretical calculations fit experimental results very well.
- OSTI ID:
- 6330134
- Journal Information:
- Physical Review, B: Condensed Matter; (USA), Journal Name: Physical Review, B: Condensed Matter; (USA) Vol. 42:7; ISSN 0163-1829; ISSN PRBMD
- Country of Publication:
- United States
- Language:
- English
Similar Records
Ginzburg-Landau theory of superconductors with short coherence length
Ginzburg-Landau-Gorkov theory for high-temperature superconductors