Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Rotational-resolved pulsed field ionization photoelectron study of NO[sup +](X [sup 1][Sigma][sup +],v[sup +]=0[endash]32) in the energy range of 9. 24[endash]16. 80 eV

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.479586· OSTI ID:6325569
 [1]; ;  [2];  [3]
  1. Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
  2. Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States) Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)
  3. Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

We have obtained rotationally resolved pulsed filed ionization photoelectron (PFI-PE) spectra of NO in the energy range of 9.2[endash]16.8 eV, covering ionization transitions of NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=0[endash]32,J[sup +])[l arrow]NO(X hthinsp;[sup 2][Pi][sub 3/2,1/2],v[sup [double prime]]=0,J[sup [double prime]]). The PFI-PE bands for NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=6[endash]32) obtained here represent the first rotationally resolved spectroscopic data for these states. The simulation using the Buckingham[endash]Orr[endash]Sichel model provides accurate molecular constants for NO[sup +](X hthinsp;[sup 1][Sigma][sup +],v[sup +]=0[endash]32), including ionization energies, vibrational constants ([omega][sub e][sup +]=2 hthinsp;382.997[plus minus]0.122 hthinsp;cm[sup [minus]1], [omega][sub e][sup +][chi][sub e][sup +]=17.437 hthinsp;84[plus minus]0.000 hthinsp;90 hthinsp;cm[sup [minus]1], [omega][sub e][sup +]y[sub e][sup +]=0.063 hthinsp;209 hthinsp;5[plus minus]3.2[times]10[sup [minus]6] hthinsp;cm[sup [minus]1], and [omega][sub e][sup +]z[sub e][sup +]=[minus]0.001 hthinsp;400 hthinsp;0[plus minus]7.2[times]10[sup [minus]8] hthinsp;cm[sup [minus]1]), and rotational constants (B[sub e][sup +]=1.996 hthinsp;608[plus minus]0.006 hthinsp;259 hthinsp;cm[sup [minus]1], [alpha][sub e][sup +]=0.020 hthinsp;103[plus minus]6.3[times]10[sup [minus]5] hthinsp;cm[sup [minus]1], and [gamma][sub e][sup +]=[minus](7.22[plus minus]2.26)[times]10[sup [minus]6] hthinsp;cm[sup [minus]1]). For v[sup +]=0[endash]15, the rotational branches are [Delta]J=J[sup +][minus]J[sup [double prime]]=[plus minus]1/2, [plus minus]3/2, [plus minus]5/2, [plus minus]7/2, and [plus minus]9/2, which correspond to the formation of photoelectron angular momentum states l=0,thinsp1, 2, and 3. The [Delta]J=[plus minus]1/2, [plus minus]3/2, [plus minus]5/2, [plus minus]7/2, [plus minus]9/2, and [plus minus]11/2 rotational branches are observed in the spectra for v[sup +]=16[endash]32, revealing the production of continuum photoelectron states l=0,thinsp1, 2, 3, and 4. The maximum [Delta]J value and intensities for high [Delta]J rotational branches are found to generally increase as v[sup +] is increased in the range of 0[endash]32. This observation is attributed to an increase in inelastic cross sections for collisions between the outgoing photoelectron and the nonspherical molecular ion core as the bond distance for NO[sup +] is increased. Thus, this observation can be taken as strong support for the electron-molecular-ion-core scattering model for angular momentum and energy exchanges in the threshold photoionization of NO. [copyright] [ital 1999 American Institute of Physics.]

OSTI ID:
6325569
Journal Information:
Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Vol. 111:7; ISSN JCPSA6; ISSN 0021-9606
Country of Publication:
United States
Language:
English