Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter

Journal Article · · Cement and Concrete Research
;  [1]; ;  [2]
  1. Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering
  2. National Inst. of Standards and Technology, Gaithersburg, MD (United States)

The pore structure of hydrated cement in mortar and concrete is quite different from that of neat cement paste. The porous transition zones formed at the aggregate-paste interfaces affect the pore size distribution. The effect of the sand content on the development of pore structure, the permeability to water, and the diffusivity of chloride ions was studied on portland cement mortars. Mortars of two water-to-cement ratios and three sand volume fractions were cast together with pastes and tested at degrees of hydration ranging from 45 to 70%. An electrically-accelerated concentration cell test was used to determine the coefficient of chloride ion diffusion while a high pressure permeability cell was employed to assess liquid permeability. The coefficient of chloride ion diffusion varied linearly with the critical pore radius as determined by mercury intrusion porosimetry while permeability was found to follow a power-law relationship vs. this critical radius. The data set provides an opportunity to directly examine the application of the Katz-Thompson relationship to cement-based materials.

OSTI ID:
63241
Journal Information:
Cement and Concrete Research, Journal Name: Cement and Concrete Research Journal Issue: 4 Vol. 25; ISSN CCNRAI; ISSN 0008-8846
Country of Publication:
United States
Language:
English

Similar Records

Percolation and pore structure in mortars and concrete
Journal Article · Thu Mar 31 23:00:00 EST 1994 · Cement and Concrete Research · OSTI ID:142330

The influence of mineral additives on the strength and porosity of OPC mortar[Ordinary Portland Cement]
Journal Article · Fri Dec 31 23:00:00 EST 1999 · Cement and Concrete Research · OSTI ID:20026622

Addition of cement to lime-based mortars: Effect on pore structure and vapor transport
Journal Article · Fri Sep 15 00:00:00 EDT 2006 · Cement and Concrete Research · OSTI ID:20871573