skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biochemical bond breaking in coal: Third quarterly report, (April through June 1987)

Technical Report ·
OSTI ID:6313534

Major research efforts are presently being conducted in three principal areas of focus: (1) optimization of coal biosolubilization; (2) characterization of the solubilized products resulting from microbial coal depolymerization; and (3) degradation of model compounds to assess potential interunit linkages which may be attacked by whole culture or cell-free culture supernatants containing extracellular enzymes. Initial evaluations of the various combinations of microbes, coals, and coal pretreatments indicated that CP1 and CP1 + 2 solubilized all of the coals selected for this project at substantially higher rates than S. setonii or T. versicolor. The ARC CP1 + 2 consortium was chosen as the primary culture for detailed evaluation of coal biosolubilization and model compound degradation. Studies were conducted to determine if solubilization of coal by CP1 + 2 supernatants could be enhanced by elevating the temperature. Solubilization of both untreated Leonardite and HNO3 treated Wyodak (Smith-Roland) subbituminous coal was increased when elevating the temperature from ambient to 35C. The initial solubilization rate (T0 - 1 hour) of Leonardite at 22C was 16 OD units/hour and at 35C was 18 OD units/hour. Thus, an elevation of 13C enhanced solubilization of this coal by 12.5%. The effect of temperature on solubilization of Wyodak coal appeared to be more pronounced. Solubilization of HNO3 treated coals by the CP organisms is not only relatively rapid, but is also extensive. The relatively rapid and extensive coal solubilization attainable by CP1 + 2 has enabled us to produce quantities of product sufficient for analytical methods development and for characterization of the coal products. Initial attempts have been made to characterize the depolymerized products using HPLC and GC/MS. 9 figs., 3 tabs.

Research Organization:
Atlantic Research Corp., Alexandria, VA (USA)
DOE Contract Number:
FG22-86PC90913
OSTI ID:
6313534
Report Number(s):
DOE/PC/90913-T2; ON: DE87012235
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English