skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of plywood and paper flywheel rotors

Thesis/Dissertation ·
OSTI ID:6311691

Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationaly flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Plywood moisture equilibration during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. High resolution tensile tests were performed while monitoring the acoustic emissions. Reasonable correlations exist between the instantaneous sample stiffness during the test and the accumulated acoustic energy released in fracture of the sample. They indicate promise for short term monitoring of damage during tensile tests. Preliminary duration of load tests were performed on vacuum dried hexagonal Birch plywood. Dynamic and static rotor-hub fatigue equipment were designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for 17 examples. Plywood rotors appear to be marginally competitive with steel hose wire or E-glass rotors. High performance oriented draft paper rotors potentially provide the lowest energy storage costs in stationary systems.

OSTI ID:
6311691
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English