Tuning computer communications networks and protocols
- Proteus Corp., Albuquerque, NM (USA)
- Sandia National Labs., Albuquerque, NM (USA)
Current computer network protocols are very robust and capable of being used in a variety of different environments. Typically, the implementations of these protocols come to the user with preset parameters that provide reasonable performance for low delay- bandwidth product environments with low error rates, but these defaults do not necessarily provide optimal performance for high delay-bandwidth, high error rate environments. To provide optimal performance from the user's perspective, which is application to application, all equivalent layers of the protocol must be tuned. The key to tuning protocols is reducing idle time on the links caused by various protocol layers waiting for acknowledgments. The circuit bandwidth, propagation delay, error rate, number of outstanding packets, buffer length, number of buffers, and buffer size can all affect the observed idle time. Experiments have been conducted on test bed systems, and on live satellite and terrestrial circuits. Observations from these experiments led the authors to draw conclusions about the locations of common bottlenecks. Various aspects of network tuning and certain specific issues relating to the tuning of three protocols (DECnet, TCP/IP, NETEX) over various media types (point-to-point and broadcast) under several different conditions (terrestrial and satellite) are examined in this paper. Also described are the lessons learned about protocol and network tuning. 3 refs., 2 tabs.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (USA)
- Sponsoring Organization:
- DOE/DP
- DOE Contract Number:
- AC04-76DP00789
- OSTI ID:
- 6310309
- Report Number(s):
- SAND-90-1705C; CONF-910313--1; ON: DE90012764; CNN: BDM 56-4351
- Country of Publication:
- United States
- Language:
- English
Similar Records
An evaluation of a user-level data transfer mechanism for high-performance networks.
Congestion control over ATM local area networks