Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Hydrogenation of carbon monoxide over alkali metal-graphite intercalates. Reaction selectivity and catalyst deactivation characteristics

Journal Article · · J. Catal.; (United States)
Alkali metal-graphite intercalates, NaC/sub 64/ and KC/sub 8/, and an iron-containing potassium-graphite (4.5 wt % Fe) possess large adsorption capacities for carbon monoxide and exhibit high initial activities for CO hydrogenation at 300/sup 0/C and 1 atm pressure. Primary hydrocarbon products obtained over sodium-graphite include both paraffins and olefins, while the product distributions over both potassium-based intercalates are limited to saturated hydrocarbons, primarily C/sub 1/--C/sub 3/, due to the olefin hydrogenation capabilities of these materials. Carbon dioxide generation by a shift reaction is prevented in all cases by the immediate and continuous removal of by-product water via interaction with intercalated alkali metal species. The latter process causes a complete and irreversible loss of catalytic activity after a cumulative conversion that, for KC/sub 8/, is equivalent to one CO molecule per three interlamellar potassium atoms/ions, suggesting a lack of interlayer penetration by CO rectant. In the case of iron-containing potassium-graphite, no residual hydrogenation activity ascribable to the transition metal component remained following total destruction of intercalated potassium. Adsorption and subsequent reaction of carbon monoxide over all of these materials apparently occurs on sites associated with intercalated alkali metal species located primarily along the exposed edges of graphitic planes. 6 figures, 1 table.
Research Organization:
Texas A and M Univ., College Station
OSTI ID:
6299548
Journal Information:
J. Catal.; (United States), Journal Name: J. Catal.; (United States) Vol. 56:2; ISSN JCTLA
Country of Publication:
United States
Language:
English