skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regioselective carbon-oxygen bond cleavage reactions of aromatic ethers and esters with potassium metal/18-crown-6/THF as the electron-transfer reagent

Journal Article · · J. Org. Chem.; (United States)
DOI:https://doi.org/10.1021/jo00257a007· OSTI ID:6299116

The facile carbon-oxygen bond cleavage reactions of a variety of aromatic ethers and esters were studied with an electron-transfer reagent that consisted of potassium metal and 18-crown-6 in tetrahydrofuran (THF). The relative rates of carbon-oxygen bond cleavage, with these aromatic ethers and esters under electron-transfer conditions, was studied in competition with the standard, diphenyl ether. The order of relative reactivities was as follows: phenyl 2-hydroxybenzoate (10) (>2.0); phenyl 2-methoxybenzoate (11) (>2.0); phenyl 4-methoxybenzoate (12) (>2.0); 2-methoxyphenyl benzoate (13) (>2.0); 4-methoxyphenyl benzoate (14) (>2.0); 4-hydroxyphenyl benzoate (15) (1.6); benzyl benzoate (9) (1.3); 4-methoxyphenyl phenyl ether (5) (1.15); phenyl benzoate (8) (1.04); diphenyl ether (1) (1.0); dibenzyl ether (2) (0.98); 2-methoxyphenyl phenyl ether (6) (0.97); benzyl phenyl ether (3) (0.96); phenethyl phenyl ether (7) (0.77); and 4-hydroxyphenyl phenyl ether (4) (<0.1). From these relative rates, it is clear that electron-donating groups increase the relative rates of C-O bond cleavage in aromatic esters. Conversely, a methoxyl group has no apparent effect on the relative rates of aromatic ether C-O bond cleavage, while a hydroxyl group dramatically decreases the rate. Proton donors, tert-butyl alcohol and hydroquinone, decreased the rate of diphenyl ether cleavage. The regioselectivity for C-O bond cleavage of esters 8-15, i.e., carbonyl-oxygen versus carboxyl-carbon cleavage, showed selective carbonyl-oxygen bond cleavage.

Research Organization:
Lawrence Berkeley Lab., CA (USA)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
6299116
Journal Information:
J. Org. Chem.; (United States), Vol. 53:22
Country of Publication:
United States
Language:
English