skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanically refuelable zinc/air electric vehicle cells

Abstract

Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration -- factors which define the essential functions of common automobiles. Such a electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described in this report focuses onmore » development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Org.:
USDOE; USDOE, Washington, DC (United States)
OSTI Identifier:
6290337
Report Number(s):
UCRL-JC-112422; CONF-930571-22
ON: DE93016446
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: 183. Electrochemical Society meeting, Honolulu, HI (United States), 16-21 May 1993
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 33 ADVANCED PROPULSION SYSTEMS; ELECTRIC-POWERED VEHICLES; ZINC-AIR BATTERIES; DESIGN; COST BENEFIT ANALYSIS; ELECTROCHEMISTRY; FEASIBILITY STUDIES; MARKETING; MATERIALS RECOVERY; USES; CHEMISTRY; ECONOMIC ANALYSIS; ECONOMICS; ELECTRIC BATTERIES; ELECTROCHEMICAL CELLS; MANAGEMENT; METAL-GAS BATTERIES; PROCESSING; VEHICLES; WASTE MANAGEMENT; WASTE PROCESSING; 250904* - Energy Storage- Batteries- Other Applications; 330300 - Advanced Propulsion Systems- Electric-Powered Systems

Citation Formats

Noring, J., Gordon, S., Maimoni, A., Spragge, M., and Cooper, J.F. Mechanically refuelable zinc/air electric vehicle cells. United States: N. p., 1992. Web.
Noring, J., Gordon, S., Maimoni, A., Spragge, M., & Cooper, J.F. Mechanically refuelable zinc/air electric vehicle cells. United States.
Noring, J., Gordon, S., Maimoni, A., Spragge, M., and Cooper, J.F. 1992. "Mechanically refuelable zinc/air electric vehicle cells". United States. doi:.
@article{osti_6290337,
title = {Mechanically refuelable zinc/air electric vehicle cells},
author = {Noring, J. and Gordon, S. and Maimoni, A. and Spragge, M. and Cooper, J.F.},
abstractNote = {Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration -- factors which define the essential functions of common automobiles. Such a electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described in this report focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1992,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration --more » factors which define the essential functions of common automobiles. Such a electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described in this report focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.« less
  • We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery tomore » form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.« less
  • The Electric Fuel Limited (EFL) refuelable zinc-air battery system is currently being tested in a number of electric vehicle demonstration projects, the largest of which is a field test of zinc-air postal vans sponsored chiefly by Deutsche Post AG (the German Post Office). The zinc-air battery is not recharged electrically, but rather is refueled through a series of mechanical and electrochemical steps that will require a special infrastructure in commercial application. As part of the German Post Office field test program, Electric Fuel designed and constructed a pilot zinc anode regeneration plant in Bremen, Germany. This plant is capable ofmore » servicing up to 100 commercial vans per week, which is adequate for the field test vehicle fleet. This paper will describe the design and operation of each of the areas and devices within the plant.« less
  • The Electric Fuel Limited (EFL) zinc-air refuelable battery system will be tested over the next two years in a number of electric vehicle demonstration projects, the largest of which is an $18-million, 64-vehicle, two-year test sponsored chiefly by Deutsche Post AG (the German Post Corporation). The German field test is the largest-ever EV fleet test of a single advanced-battery technology. It also represents a marked departure from other EV test and demonstration programs, in that it is being sponsored not by government or electric utility interests, but by large fleet operators committed to shifting significant proportions of their vehicles tomore » electric over the next 5--10 years. The Electric Fuel battery has specific energy of 200 Wh/kg, an achievement that allows electric vehicles to go as far on a charge as conventionally fueled vehicles go on a tank of gasoline. Fast, convenient refueling eliminates the need for lengthy electrical recharging, and clean, centralized zinc regeneration plants ensure the most efficient and environment-friendly use of energy resources.« less
  • The preliminary results of simulated electric vehicle chopper controlled discharge of a nickel/zinc (NiZn) battery show delivered energy increases of 5 to 25 percent compared to constant current discharges of the same average current. The percentage-increase was a function of chopper frequency, the ratio of peak-to-average current, and the magnitude of the discharge current. Because the chopper effects are of a complex nature, electric vehicle battery/speed controller interaction must be carefully considered in vehicle design to optimize battery performance.