Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The sorption of humic acids to mineral surfaces and their roles in contaminant binding

Conference ·
OSTI ID:6280294

Humic substances dissolved in groundwater may adsorb to certain mineral surfaces, rendering hydrophilic surfaces hydrophobic and making them sorbents for hydrophobic organic compounds (HOC). The sorption of humic and fulvic acids (International Humic Substance Society, IHSS, reference samples) on hematite and kaolinite was investigated to determine how natural organic coatings influence HOC sorption. The sorption behavior of the humic substances was consistent with a ligand-exchange mechanism, and the amount of sorption depended on the concentration of hydroxylated surface sites on the mineral and the properties of the humic substance. The sorption of the humic substances to two solids was proportional to their aromatic carbon content and inversely proportional to the O/C ratio. Increasing quantities of sorbed humic substances (f{sub oc}0.01 to 0. 5%) increased the sorption of carbazole, dibenzothiophene, and anthracene. Peat humic acid, the most aromatic coating, showed the greatest sorption enhancement of HOC when sorbed to hematite. In addition, HOC sorption was greater on organic coating formed at low ionic strength (I = 0.005) as compared to higher ionic strength (I = 0.1). We suggest that both the mineral surface and the ionic strength of the electrolyte affect the interfacial configuration of the sorbed humic substance, altering the size or accessibly of hydrophobic domains on the humic molecule to HOC. 30 refs., 5 figs.

Research Organization:
Pacific Northwest Lab., Richland, WA (USA)
Sponsoring Organization:
DOE/ER
DOE Contract Number:
AC06-76RL01830
OSTI ID:
6280294
Report Number(s):
PNL-SA-18877; CONF-9008177--1; ON: DE91005678
Country of Publication:
United States
Language:
English