Some aspects of the atmospheric corrosion of copper in the presence of sodium chloride
- Univ. of Goeteborg (Sweden). Dept. of Inorganic Chemistry
The effect of NaCl in combination with O{sub 3} and SO{sub 2} on the atmospheric corrosion of copper was investigated. Corrosion products formed after 4 weeks exposure were characterized qualitatively by X-ray diffraction and quantitatively by gravimetry and ion chromatography of leaching solutions. Studies of SO{sub 2} deposition and O{sub 3} consumption were performed using on-line gas analysis. Large amounts of cuprite (Cu{sub 2}O) formed in all environments at 70 and 90% relative humidity. The corrosive effect of salt was strong in pure humid air and in air containing O{sub 3} or SO{sub 2}. Corrosion rate was correlated to the amount of chloride applied to the surface and to humidity. In an atmosphere containing a combination of SO{sub 2} and O{sub 3} at 90% relative humidity, corrosion was rapid in the absence of NaCl. In this case, small additions of NaCl resulted in a marked decrease in corrosion rate. In the absence of SO{sub 2}, tenorite (CuO), nantokite (CuCl), clinoatacamite [Cu{sub 2}(OH){sub 3}Cl], and malachite [Cu{sub 2}(OH){sub 2}CO{sub 3}] were identified. In the presence of SO{sub 2}, brochantite [Cu{sub 4}(OH){sub 6}SO{sub 4}], soluble sulfate, and an unknown phase occurred, while no tenorite or malachite was formed. The combination of SO{sub 2} and O{sub 3} resulted in the formation of antlerite [Cu{sub 3}(OH){sub 4}SO{sub 4}] and Cu{sub 2.5}(OH){sub 3}SO{sub 4}{center_dot}2H{sub 2}O as well.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 624289
- Journal Information:
- Journal of the Electrochemical Society, Journal Name: Journal of the Electrochemical Society Journal Issue: 4 Vol. 145; ISSN JESOAN; ISSN 0013-4651
- Country of Publication:
- United States
- Language:
- English
Similar Records
Mechanism of atmospheric corrosion of copper in the presence of submicron ammonium sulfate particles at 300 and 373 K
A laboratory study of the effect of acetic acid vapor on atmospheric copper corrosion