skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Creep crack growth behavior of aluminum alloy 2519. Part 2: Numerical analysis

Conference ·
OSTI ID:624245
 [1]; ; ;  [2]
  1. Louisiana Tech Univ., Ruston, LA (United States). Dept. of Mechanical and Industrial Engineering
  2. Georgia Inst. of Tech., Atlanta, GA (United States)

The experimental analysis of high temperature fracture in Aluminum Alloy 2519-T87 presented in Part 1 of this paper highlighted the creep-brittle fracture characteristics of the material and showed reasonable correlation of crack growth rates with the stress intensity factor K. Part 2 continues this investigation numerically using growing crack finite element analyses. Experimentally observed crack growth histories of four aluminum 2519-T87 compact specimens are enforced by controlling the rate of release of finite element nodes along the crack growth path to gain insight into the relation of the crack tip fields to far field fracture parameters and to crack growth rates. A variable time-step, nodal-release algorithm is presented to model the high strain rates that occur during the initial stages of crack growth. The numerical results indicate an initial transient period of crack growth followed by a quasi-steady-state crack growth regime in which the crack tip fields change slowly with increasing crack length. Transition of crack growth to the quasi-steady-state regime, where similitude and small-scale creep conditions roughly exist, is given by a transition time t{sub g} that depends on the crack growth history and material properties. Excellent correlation of the stress intensity factor K with the crack growth rates is observed after time t{sub g}. Experimental difficulties in measuring the creep component of the load-line deflection rate are also discussed.

OSTI ID:
624245
Report Number(s):
CONF-950618-; ISBN 0-8031-2413-9; TRN: IM9820%%213
Resource Relation:
Conference: 27. ASTM symposium on fatigue and fracture mechanics, Williamsburg, VA (United States), 26-29 Jun 1995; Other Information: PBD: 1997; Related Information: Is Part Of Elevated temperature effects on fatigue and fracture; Piascik, R.S. [ed.] [NASA Langley Research Center, Hampton, VA (United States)]; Gangloff, R.P. [ed.] [Univ. of Virginia, Charlottesville, VA (United States)]; Saxena, A. [ed.] [Georgia Inst. of Tech., Atlanta, GA (United States)]; PB: 234 p.; ASTM special technical publication, 1297
Country of Publication:
United States
Language:
English