Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermal decomposition of carbon tetrachloride

Journal Article · · Journal of Physical Chemistry; (United States)
DOI:https://doi.org/10.1021/j100111a032· OSTI ID:6232254
;  [1]; ;  [2]
  1. Argonne National Lab., IL (United States)
  2. Univ. of Illinois, Chicago (United States)

The first rate measurements of the thermal dissociation of CCl[sub 4] are reported. Three detection techniques were used in monitoring the reaction rate for various dilutions over a wide temperature range: (i) ARAS of product Cl atoms in reflected shock waves using 3.2--6.4 ppM of CCl[sub 4] in Ar over 1084--1705 K and 150--908 Torr, (ii) decay of CCl[sub 4] by molecular absorption of O-atom resonance radiation in reflected shock waves using 48--173 ppM of CCl[sub 4] in Ar over 1192--1733 K and 219--855 Torr, and (iii) laser schlieren density gradients in incident shock waves using 0.5 and 2% CCl[sub 4] in Kr over 1470--2186 K and 90--660 Torr. The second-order rates from ARAS and molecular absorption measurements for the bond fission reaction CCl[sub 4] [yields] CCl[sub 3] + Cl are in complete agreement with the laser schlieren results where they overlap. The temperature and pressure dependence of these rates is well characterized by Gorin model RRKM calculations using current [Delta]H[degrees][sub 0] = 67.71 kcal/mol for E[sub 0], derived from [Delta][sub f]H[degrees][sub 298] = 17.0 kcal/mol for for CCl[sub 3]. The low-pressure rate constant (k[sub 0]) derived from this RRKM fit is log k[sub 0] (cm[sup 3]/(mol s)) = 54.980 [minus] 10.624 log T [minus] 74.796 (kcal/mol)/2.303RT. These low-pressure rates require unusually large [beta][sub c] corresponding to a [l angle][Delta]E[r angle][sub down] = 1200 cm[sup [minus]1]. This may be a general feature of chlorocarbon dissociations. The ARAS data indicate that two Cl atoms are ultimately produced for each CCl[sub 4] that dissociates, with the second Cl atom forming slower than the first. Here all the measurements are consistent with a further dissociation of CCl[sub 3], CCl[sub 3] [yields] CCl[sub 2] + Cl, as the dominant source of secondary Cl-atom at a rate about 0.1 that of the primary fission. 31 refs., 9 figs., 2 tabs.

DOE Contract Number:
W-31109-ENG-38; FG02-85ER13384
OSTI ID:
6232254
Journal Information:
Journal of Physical Chemistry; (United States), Journal Name: Journal of Physical Chemistry; (United States) Vol. 97:9; ISSN JPCHAX; ISSN 0022-3654
Country of Publication:
United States
Language:
English