Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Pyrolysis Mechanisms of Aromatic Carboxylic Acids

Conference ·
OSTI ID:622772

Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC05-96OR22464
OSTI ID:
622772
Report Number(s):
ORNL/CP--95384; CONF-980314--; ON: DE98001418
Country of Publication:
United States
Language:
English