Pyrolysis Mechanisms of Aromatic Carboxylic Acids
Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.
- Research Organization:
- Oak Ridge National Lab., TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- AC05-96OR22464
- OSTI ID:
- 622772
- Report Number(s):
- ORNL/CP--95384; CONF-980314--; ON: DE98001418
- Country of Publication:
- United States
- Language:
- English
Similar Records
Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: Does decarboxylation lead to cross-linking?
Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: Does decarboxylation lead to cross-linking?