skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flow and plasticity via nonequilibrium molecular dynamics

Abstract

The viscous flow of fluids and the plastic flow of solids, such as metals, are interesting from both the practical and the theoretical points of view. Atomistic molecular dynamics simulations provide a way of visualizing and understanding these flows in a detailed microscopic way. Simulations are necessarily carried out at relatively high rates of strain. For this reason they are ideally suited to the study of nonlinear flow phenomena: normal stresses induced by shear deformation, stress rotation, and the coupling of stress with heat flow, for instance. The simulations require appropriate boundary conditions, forces, and equations of motion. Newtonian mechanics is relatively inefficient for this simulation task. A modification, Nonequilibrium Molecular Dynamics, has been developed to simulate nonequilibrium flows. By now, many high-strain-rate rheological studies of flowing (viscous) fluids and (plastic) solids have been carried out. Here I describe the new methods used in the simulations and some results obtained in this way. A three-body shear-flow exercise is appended to make these ideas more concrete.

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab., CA (USA)
OSTI Identifier:
6217365
Report Number(s):
UCRL-90904; CONF-8405247-3
ON: DE85001011
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: ISPRA EURATOM school on computer simulation in physical metallurgy, Ispra, Italy, 21 May 1984
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; FLOW MODELS; MOLECULAR MODELS; VISCOUS FLOW; NONLINEAR PROBLEMS; PLASTICITY; SIMULATION; FLUID FLOW; MATHEMATICAL MODELS; MECHANICAL PROPERTIES; 640410* - Fluid Physics- General Fluid Dynamics

Citation Formats

Hoover, W.G. Flow and plasticity via nonequilibrium molecular dynamics. United States: N. p., 1984. Web.
Hoover, W.G. Flow and plasticity via nonequilibrium molecular dynamics. United States.
Hoover, W.G. Mon . "Flow and plasticity via nonequilibrium molecular dynamics". United States. doi:. https://www.osti.gov/servlets/purl/6217365.
@article{osti_6217365,
title = {Flow and plasticity via nonequilibrium molecular dynamics},
author = {Hoover, W.G.},
abstractNote = {The viscous flow of fluids and the plastic flow of solids, such as metals, are interesting from both the practical and the theoretical points of view. Atomistic molecular dynamics simulations provide a way of visualizing and understanding these flows in a detailed microscopic way. Simulations are necessarily carried out at relatively high rates of strain. For this reason they are ideally suited to the study of nonlinear flow phenomena: normal stresses induced by shear deformation, stress rotation, and the coupling of stress with heat flow, for instance. The simulations require appropriate boundary conditions, forces, and equations of motion. Newtonian mechanics is relatively inefficient for this simulation task. A modification, Nonequilibrium Molecular Dynamics, has been developed to simulate nonequilibrium flows. By now, many high-strain-rate rheological studies of flowing (viscous) fluids and (plastic) solids have been carried out. Here I describe the new methods used in the simulations and some results obtained in this way. A three-body shear-flow exercise is appended to make these ideas more concrete.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jun 11 00:00:00 EDT 1984},
month = {Mon Jun 11 00:00:00 EDT 1984}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Nonequilibrium molecular-dynamics (MD) simulations of shock waves in single crystals have shown that, above a threshold strength, strongly shocked crystals deform in a very simple way. Rather than experiencing massive deformation, a simple slippage occurs at the shock front, relieving the peak shear stress, and leaving behind a stacking fault. Later calculations quantified the apparent threshold strength, namely the yield strength of the perfect crystal. Subsequently, pulsed x-ray experiments on shocked single crystals showed relative shifts in diffraction peaks, confirming our MD observations of stacking faults produced by shockwave passage. With the advent of massively parallel computers, we have beenmore » able to simulate shock waves in 10-million atom crystals with cross-sectional dimensions of 100{times}100 fcc unit cells (compared to earlier 6{times}6 systems). We have seen that the increased cross-section allows the system to slip along all of the available {l_brace}111{r_brace} slip planes, in different places along the now non-planar shock front. These simulations conclusively eliminate the worry that the kind of slippage we have observed is somehow an artifact of transverse periodic boundary conditions. Thus, future simulations are much more likely to show that weak-shock plasticity is nucleated by pre-existing extended defects embedded in the sample. {copyright} {ital 1998 American Institute of Physics.}« less
  • Nonequilibrium molecular dynamics (NEMD) simulations of shock waves in single crystals have shown that, above a threshold strength, strongly shocked crystals deform in a very simple way. Rather than experiencing massive deformation, a simple slippage occurs at the shock front, relieving the peak shear stress, and leaving behind a stacking fault. Later calculations quantified the apparent threshold strength, namely the yield strength of the perfect crystal. Subsequently, pulsed x-ray experiments on shocked single crystals showed relative shifts in diffraction peaks, confirming the authors NEMD observations of stacking faults produced by shockwave passage. With the advent of massively parallel computers, themore » authors have been able to simulate shock waves in 10-million atom crystals with cross sectional dimensions of 100 x 100 fcc unit cells (compared to earlier 6 x 6 systems). They have seen that the increased cross-section allows the system to slip along all of the available {l_brace}111{r_brace} slip planes, in different places along the now non-planar shock front. These simulations conclusively eliminate the worry that the kind of slippage they have observed is somehow an artifact of transverse periodic boundary conditions. Moreover, they have introduced a piston face that is no longer perfectly flat, mimicking a line or surface inhomogeneity in the unshocked material, and show that for weaker shock waves (below the perfect crystal yield strength), stacking faults can be nucleated by preexisting extended defects.« less
  • Advances in the ability to generate extremely high pressures in dynamic experiments such as at the National Ignition Facility has motivated the need for special materials optimized for those conditions as well as ways to probe the response of these materials as they are deformed. We need to develop a much deeper understanding of the behavior of materials subjected to high pressure, especially the effect of rate at the extremely high rates encountered in those experiments. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum at pressures less than 100 GPa to investigate themore » processes associated with plastic deformation for strains up to 100%. We focus on 3D polycrystalline systems with typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures. We also present some results on void growth in nanocrystalline BCC metals under tension.« less
  • The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealedmore » high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference.« less
  • We are developing two- and three-dimensional pair-force and embedded-atom simulations of mechanical deformation processes --- indentation, machining, and inelastic ballistic-impact collisions --- related to current nanometer machining practice. Here we describe these problems and their implementation using both mainframe and parallel-processor computers. 11 refs., 3 figs.