skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of the ice phase on a mesoscale convective system: Implication of cloud parameterization and cloud radiative properties

Conference ·
OSTI ID:6207528

This study attempts to provide further understanding of the effect of the ice phase on cloud ensemble features which are useful for improving GCM cumulus parameterization. In addition, cloud model results are used to diagnose the radiative properties of anvils in order to assess cloud/radiation interaction and its feedback on the larger-scale climate for the future work. The heat, moisture and mass budget analyses of a simulated squall line system indicate that, at least for this type of system, the inclusion of the ice phase in the microphysics does not considerably change the net cloud heating and drying effects and the feedback on the large-scale motion. Nonetheless, its impact on the radiative properties of clouds significantly influences not only the squall line system itself, but also the larger-scale circulation due to the favorable stratification for long-lasting anvil clouds. The water budget suggests a simple methodology to parameterize the microphysical effect without considering it as a model physics module. Further application of the water budget might also be used to parameterize the cloud transport of condensates in the anvil cloud region, which allows the GCM columns to interact with each other. The findings of this study suggest that the ice phase could be ignored in the cloud parameterization in order to save significant amounts of computational resources and to simplify the model physics. More scientific effort should, however, be focused on the effect of the ice phase to further explore cloud feedback on the large-scale climate through the radiative process. The cloud/radiation interaction and its feedback on the larger-scale climate will be addressed in a companion study by coupling the radiative transfer model with the cloud model. 19 refs., 13 figs.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
6207528
Report Number(s):
UCRL-JC-108161; CONF-910878-1; ON: DE92002190
Resource Relation:
Conference: 20. general assembly of the International Union of Geodesy and Geophysics (IUGG), Vienna (Austria), 11-24 Aug 1991
Country of Publication:
United States
Language:
English