Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Simulation of land-use patterns affecting the global carbon cycle. [Reconstruction and projection of CO/sub 2/ scenarios from 1860 to 2460]

Technical Report ·
DOI:https://doi.org/10.2172/6206754· OSTI ID:6206754
Past increase of atmospheric CO/sub 2/ involves significant ntributions from both fossil and nonfossil (biospheric) sources. A simulation model was used to reconstruct changes since 1860 and project four hypothetical future scenarios of CO/sub 2/ injection to 2460. Nineteen compartments and their exchanges of carbon were considered. Areal extent of tropical forests, other wooded ecosystems, and nonforests were incorporated into the model. Rapidly and slowly exchanging pools of carbon per unit area, and net primary production for each pool and exosystem group, were projected by integrating income-loss differential equations numerically using CSMP programming language. Estimated cumulative releases of CO/sub 2/ from fossil fuels (plus cement) near 120 Gtons of carbon (1 Gton = 10/sup 9/ metric tons) from 1860 to 1970 were assumed to equal prompt and delayed releases from forest clearing. Limits of exploitable forest area and biomass were evaluated and found to contribute much less future CO/sub 2/ than the usable coal, oil, gas, and oil shale. Ultimate release from the latter (7500 +- 2500 x 10/sup 9/ tons of C) could increase atmospheric CO/sub 2/ manyfold: doubling the assumed 1860 levels as early as (1) year 2025 for assumed nominal scenario (expanding releases slightly less rapidly than at present), (2) year 2033 for a delayed expansion scenario that would prolong use of fossil reserves (lowering peak carbon release rate from approx. 43 to approx. 28 Gtons/year), (3) year 2087 for a slow burner scenario (increasing very slowly from present levels), and (4) year 2290 for a combination scenario (which assumes low fossil-fuel use, high carbon storage, and high net primary production of forested exosystems).
Research Organization:
Oak Ridge National Lab., TN (USA)
DOE Contract Number:
W-7405-ENG-26
OSTI ID:
6206754
Report Number(s):
ORNL/TM-6651
Country of Publication:
United States
Language:
English