skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chromium precipitation from tanning spent liquors using industrial alkaline residues: A comparative study

Journal Article · · Waste Management
;  [1]
  1. Univ. of Porto (Portugal). Faculty of Engineering

Chromium precipitation from spent tanning liquors using industrial alkaline tailings is described and removal efficiencies are compared with those obtained with traditional chemicals as NaOH, CaO and MgO: (1) using steelmaking dusts at dosages up to 70 g/l residual Cr remains {ge} 3.7 mg/l. Moreover Cr and mainly Pb are partially leached by the spent tanning liquor, therefore limiting the use of this industrial residue as Cr precipitant; (2) a dosage of 80 g/l (dry basis) of chemical sludge from a water treatment plant results in a removal efficiency of 99.97% Cr and residual Cr {le} 2 mg/l under experimental conditions that include stirring at 100 rpm for 1 h and settling for 23 h. Sedimentation time may be reduced to 2 h if stirring is extended to 2 h. Resulting sludge volume is about 400 ml/l. However, during Cr precipitation, Al is leached form the added product up to about 40 mg Al per liter of supernatant; (3) precipitation using acetylene production sludge only requires a dosage of 16 g/l (dry basis) to remove 99.96% Cr after stirring for 1 h and settling for 2 h. The soluble Cr concentration in the clarified effluent is {le} 2 mg/l and the sludge volume about 500 ml/l. This Cr level can also be achieved at a dosage of 14 g/l, provided the stirring time is increased to 3 h; (4) these results are comparable with those using either CaO or MgO at similar dosages; and (5) NaOH at dosages between 6.4 and 14 g/l proved to be not sufficiently effective for Cr precipitation. Although removal efficiencies up to 99.9% are achieved, residual Cr is always above 8.7 mg/l. Additionally, the resulting sludge is not very dense, thus leading to high sludge volume production.

Sponsoring Organization:
USDOE
OSTI ID:
619432
Journal Information:
Waste Management, Vol. 17, Issue 4; Other Information: PBD: 1998
Country of Publication:
United States
Language:
English