Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Numerical evaluation of integrals containing a spherical Bessel function by product integration

Journal Article · · J. Math. Phys. (N.Y.); (United States)
DOI:https://doi.org/10.1063/1.525061· OSTI ID:6186584
A method is developed for numerical evaluation of integrals with k-integration range from 0 to infinity that contain a spherical Bessel function j/sub l/(kr) explicitly. The required quadrature weights are easily calculated and the rate of convergence is rapid: only a relatively small number of quadrature points is needed: for an accurate evaluation even when r is large. The quadrature rule is obtained by the method of product integration. With the abscissas chosen to be those of Clenshaw--Curtis and the Chebyshev polynomials as the interpolating polynomials, quadrature weights are obtained that depend on the spherical Bessel function. An inhomogenous recurrence relation is derived from which the weights can be calculated without accumulation of roundoff error. The procedure is summarized as an easily implementable algorithm. Questions of convergence are discussed and the rate of convergence demonstrated for several test integrals. Alternative procedures are given for generating the integration weights and an error analysis of the method is presented.
Research Organization:
Department of Physics, The George Washington University, Washington, D. C. 20052
OSTI ID:
6186584
Journal Information:
J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 22:7; ISSN JMAPA
Country of Publication:
United States
Language:
English

Similar Records

On the evaluation of the integral over the product of two spherical Bessel functions
Journal Article · Thu Feb 28 23:00:00 EST 1991 · Journal of Mathematical Physics (New York); (USA) · OSTI ID:5694855

Spectral scheme for atomic structure calculations in density functional theory
Journal Article · Mon Nov 25 19:00:00 EST 2024 · Computer Physics Communications · OSTI ID:2498421

Sturmian eigenvalue equations with a Bessel function basis
Journal Article · Fri Feb 28 23:00:00 EST 1986 · J. Math. Phys. (N.Y.); (United States) · OSTI ID:6074379