skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Incorporation of surface tension into the structural finite element code SANCHO

Technical Report ·
DOI:https://doi.org/10.2172/6185598· OSTI ID:6185598

To analytically model soldering and welding processes it is necessary to track the deformation of a material as it changes from a solid to a liquid and then back again to a solid. Because it is the residual stress state in the solid that is of primary interest, the most suitable tools for studying this class of problems appear to be Lagrangian finite element codes that are typically used in the analysis of solids. It is possible to obtain solutions to hydrostatic fluids problems using a Lagrangian finite element code by allowing the ''fluid'' phase of the material to sustain a deviatoric stress component that is very small in magnitude relative to the hydrostatic pressure that exists in the material. The capability to model surface tension phenomena was added to the finite element code SANCHO. SANCHO is a Lagrangian finite element code that uses a dynamic relaxation scheme to solve nonlinear problems involving quasistatic loading of two-dimensional solids. SANCHO is formulated so that it properly accounts for large deformations. This report details the theory and implementation of the method used to model surface tension. With this new capability, SANCHO can be used to solve surface tension problems that are more complex than the problems that can be treated with other more tradition methods of surface tension analysis. 3 refs., 10 figs.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
6185598
Report Number(s):
SAND-89-0509; ON: DE89011354
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English